Light-matter correlations in Quantum Floquet engineering of cavity quantum materials (2302.12290v4)
Abstract: Quantum Floquet engineering (QFE) seeks to generalize the control of quantum systems with classical external fields, widely known as Semi-Classical Floquet engineering (SCFE), to quantum fields. However, to faithfully capture the physics at arbitrary coupling, a gauge-invariant description of light-matter interaction in cavity-QED materials is required, which makes the Hamiltonian highly non-linear in photonic operators. We provide a non-perturbative truncation scheme of the Hamiltonian, which is valid or arbitrary coupling strength, and use it to investigate the role of light-matter correlations, which are absent in SCFE. We find that even in the high-frequency regime, light-matter correlations can be crucial, in particular for the topological properties of a system. As an example, we show that for a SSH chain coupled to a cavity, light-matter correlations break the original chiral symmetry of the chain, strongly affecting the robustness of its edge states. In addition, we show how light-matter correlations are imprinted in the photonic spectral function and discuss their relation with the topology of the bands.
- N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
- A. Gómez-León and G. Platero, Floquet-bloch theory and topology in periodically driven lattices, Phys. Rev. Lett. 110, 200403 (2013).
- A. Gómez-León, P. Delplace, and G. Platero, Engineering anomalous quantum hall plateaus and antichiral states with ac fields, Phys. Rev. B 89, 205408 (2014).
- A. G. Grushin, A. Gómez-León, and T. Neupert, Floquet fractional chern insulators, Phys. Rev. Lett. 112, 156801 (2014).
- M. S. Rudner and N. H. Lindner, Band structure engineering and non-equilibrium dynamics in floquet topological insulators, Nature Reviews Physics 2, 229 (2020).
- T. Oka and S. Kitamura, Floquet engineering of quantum materials, Annual Review of Condensed Matter Physics 10, 387 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013423 .
- R. Aguado and G. Platero, Dynamical localization and absolute negative conductance in an ac-driven double quantum well, Phys. Rev. B 55, 12860 (1997).
- G. Platero and R. Aguado, Photon-assisted transport in semiconductor nanostructures, Physics Reports 395, 1 (2004).
- C. E. Creffield and G. Platero, Coherent control of interacting particles using dynamical and aharonov-bohm phases, Phys. Rev. Lett. 105, 086804 (2010).
- S. Higashikawa, H. Fujita, and M. Sato, Floquet engineering of classical systems, arXiv: Strongly Correlated Electrons (2018).
- O. Dmytruk and M. Schiro, Controlling topological phases of matter with quantum light, Communications Physics 5, 271 (2022).
- J. Li, L. Schamriß, and M. Eckstein, Effective theory of lattice electrons strongly coupled to quantum electromagnetic fields, Phys. Rev. B 105, 165121 (2022).
- F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum materials, Applied Physics Reviews 9, 011312 (2022), https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.0083825/16648467/011312_1_online.pdf .
- A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a floquet-space perspective, New Journal of Physics 17, 093039 (2015a).
- J. Li and M. Eckstein, Manipulating intertwined orders in solids with quantum light, Phys. Rev. Lett. 125, 217402 (2020).
- L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4, 041048 (2014).
- S. A. Weidinger and M. Knap, Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system, Scientific Reports 7, 45382 (2017).
- L. Zhang, V. Khemani, and D. A. Huse, A floquet model for the many-body localization transition, Phys. Rev. B 94, 224202 (2016).
- K. Iwahori and N. Kawakami, Stabilization of prethermal floquet steady states in a periodically driven dissipative bose-hubbard model, Phys. Rev. A 95, 043621 (2017).
- P. Delplace, A. Gómez-León, and G. Platero, Merging of dirac points and floquet topological transitions in ac-driven graphene, Phys. Rev. B 88, 245422 (2013).
- R. Roy and F. Harper, Periodic table for floquet topological insulators, Phys. Rev. B 96, 155118 (2017).
- W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
- O. Dmytruk and M. Schiró, Gauge fixing for strongly correlated electrons coupled to quantum light, Phys. Rev. B 103, 075131 (2021).
- A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a floquet-space perspective, New Journal of Physics 17, 093039 (2015b).
- J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators (Springer Cham, New York, 2016).
- Y. Hatsugai, Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett. 71, 3697 (1993).
- V. Gurarie, Single-particle green’s functions and interacting topological insulators, Phys. Rev. B 83, 085426 (2011).
- A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their respective green’s functions, Phys. Rev. B 84, 125132 (2011).
- H. Shapourian, K. Shiozaki, and S. Ryu, Many-body topological invariants for fermionic symmetry-protected topological phases, Phys. Rev. Lett. 118, 216402 (2017).
- A. Gómez-León, F. Luis, and D. Zueco, Dispersive readout of molecular spin qudits, Phys. Rev. Applied 17, 064030 (2022).
- B. Pérez-González, A. Gómez-León, and G. Platero, Topology detection in cavity qed, Phys. Chem. Chem. Phys. 24, 15860 (2022).
- M. Leijnse and K. Flensberg, Quantum information transfer between topological and spin qubit systems, Phys. Rev. Lett. 107, 210502 (2011).
- L. Nicolai and H. P. Büchler, Topological networks for quantum communication between distant qubits, npj Quantum Information 3, 47 (2017).
- M. Bello, C. E. Creffield, and G. Platero, Long-range doublon transfer in a dimer chain induced by topology and ac fields, Scientific Reports 6, 22562 (2016).
- M. Bello, C. E. Creffield, and G. Platero, Sublattice dynamics and quantum state transfer of doublons in two-dimensional lattices, Phys. Rev. B 95, 094303 (2017).
- O. V. Kibis, O. Kyriienko, and I. A. Shelykh, Band gap in graphene induced by vacuum fluctuations, Phys. Rev. B 84, 195413 (2011).
- X. Wang, E. Ronca, and M. A. Sentef, Cavity quantum electrodynamical chern insulator: Towards light-induced quantized anomalous hall effect in graphene, Phys. Rev. B 99, 235156 (2019).
- O. Dmytruk and M. Trif, Microwave detection of gliding majorana zero modes in nanowires, Phys. Rev. B 107, 115418 (2023).
- M. Trif and Y. Tserkovnyak, Resonantly tunable majorana polariton in a microwave cavity, Phys. Rev. Lett. 109, 257002 (2012).
- M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79, 013819 (2009).