Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Light-matter correlations in Quantum Floquet engineering of cavity quantum materials (2302.12290v4)

Published 23 Feb 2023 in cond-mat.mes-hall

Abstract: Quantum Floquet engineering (QFE) seeks to generalize the control of quantum systems with classical external fields, widely known as Semi-Classical Floquet engineering (SCFE), to quantum fields. However, to faithfully capture the physics at arbitrary coupling, a gauge-invariant description of light-matter interaction in cavity-QED materials is required, which makes the Hamiltonian highly non-linear in photonic operators. We provide a non-perturbative truncation scheme of the Hamiltonian, which is valid or arbitrary coupling strength, and use it to investigate the role of light-matter correlations, which are absent in SCFE. We find that even in the high-frequency regime, light-matter correlations can be crucial, in particular for the topological properties of a system. As an example, we show that for a SSH chain coupled to a cavity, light-matter correlations break the original chiral symmetry of the chain, strongly affecting the robustness of its edge states. In addition, we show how light-matter correlations are imprinted in the photonic spectral function and discuss their relation with the topology of the bands.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
  2. A. Gómez-León and G. Platero, Floquet-bloch theory and topology in periodically driven lattices, Phys. Rev. Lett. 110, 200403 (2013).
  3. A. Gómez-León, P. Delplace, and G. Platero, Engineering anomalous quantum hall plateaus and antichiral states with ac fields, Phys. Rev. B 89, 205408 (2014).
  4. A. G. Grushin, A. Gómez-León, and T. Neupert, Floquet fractional chern insulators, Phys. Rev. Lett. 112, 156801 (2014).
  5. M. S. Rudner and N. H. Lindner, Band structure engineering and non-equilibrium dynamics in floquet topological insulators, Nature Reviews Physics 2, 229 (2020).
  6. T. Oka and S. Kitamura, Floquet engineering of quantum materials, Annual Review of Condensed Matter Physics 10, 387 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013423 .
  7. R. Aguado and G. Platero, Dynamical localization and absolute negative conductance in an ac-driven double quantum well, Phys. Rev. B 55, 12860 (1997).
  8. G. Platero and R. Aguado, Photon-assisted transport in semiconductor nanostructures, Physics Reports 395, 1 (2004).
  9. C. E. Creffield and G. Platero, Coherent control of interacting particles using dynamical and aharonov-bohm phases, Phys. Rev. Lett. 105, 086804 (2010).
  10. S. Higashikawa, H. Fujita, and M. Sato, Floquet engineering of classical systems, arXiv: Strongly Correlated Electrons  (2018).
  11. O. Dmytruk and M. Schiro, Controlling topological phases of matter with quantum light, Communications Physics 5, 271 (2022).
  12. J. Li, L. Schamriß, and M. Eckstein, Effective theory of lattice electrons strongly coupled to quantum electromagnetic fields, Phys. Rev. B 105, 165121 (2022).
  13. F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum materials, Applied Physics Reviews 9, 011312 (2022), https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.0083825/16648467/011312_1_online.pdf .
  14. A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a floquet-space perspective, New Journal of Physics 17, 093039 (2015a).
  15. J. Li and M. Eckstein, Manipulating intertwined orders in solids with quantum light, Phys. Rev. Lett. 125, 217402 (2020).
  16. L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4, 041048 (2014).
  17. S. A. Weidinger and M. Knap, Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system, Scientific Reports 7, 45382 (2017).
  18. L. Zhang, V. Khemani, and D. A. Huse, A floquet model for the many-body localization transition, Phys. Rev. B 94, 224202 (2016).
  19. K. Iwahori and N. Kawakami, Stabilization of prethermal floquet steady states in a periodically driven dissipative bose-hubbard model, Phys. Rev. A 95, 043621 (2017).
  20. P. Delplace, A. Gómez-León, and G. Platero, Merging of dirac points and floquet topological transitions in ac-driven graphene, Phys. Rev. B 88, 245422 (2013).
  21. R. Roy and F. Harper, Periodic table for floquet topological insulators, Phys. Rev. B 96, 155118 (2017).
  22. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
  23. O. Dmytruk and M. Schiró, Gauge fixing for strongly correlated electrons coupled to quantum light, Phys. Rev. B 103, 075131 (2021).
  24. A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a floquet-space perspective, New Journal of Physics 17, 093039 (2015b).
  25. J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators (Springer Cham, New York, 2016).
  26. Y. Hatsugai, Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett. 71, 3697 (1993).
  27. V. Gurarie, Single-particle green’s functions and interacting topological insulators, Phys. Rev. B 83, 085426 (2011).
  28. A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their respective green’s functions, Phys. Rev. B 84, 125132 (2011).
  29. H. Shapourian, K. Shiozaki, and S. Ryu, Many-body topological invariants for fermionic symmetry-protected topological phases, Phys. Rev. Lett. 118, 216402 (2017).
  30. A. Gómez-León, F. Luis, and D. Zueco, Dispersive readout of molecular spin qudits, Phys. Rev. Applied 17, 064030 (2022).
  31. B. Pérez-González, A. Gómez-León, and G. Platero, Topology detection in cavity qed, Phys. Chem. Chem. Phys. 24, 15860 (2022).
  32. M. Leijnse and K. Flensberg, Quantum information transfer between topological and spin qubit systems, Phys. Rev. Lett. 107, 210502 (2011).
  33. L. Nicolai and H. P. Büchler, Topological networks for quantum communication between distant qubits, npj Quantum Information 3, 47 (2017).
  34. M. Bello, C. E. Creffield, and G. Platero, Long-range doublon transfer in a dimer chain induced by topology and ac fields, Scientific Reports 6, 22562 (2016).
  35. M. Bello, C. E. Creffield, and G. Platero, Sublattice dynamics and quantum state transfer of doublons in two-dimensional lattices, Phys. Rev. B 95, 094303 (2017).
  36. O. V. Kibis, O. Kyriienko, and I. A. Shelykh, Band gap in graphene induced by vacuum fluctuations, Phys. Rev. B 84, 195413 (2011).
  37. X. Wang, E. Ronca, and M. A. Sentef, Cavity quantum electrodynamical chern insulator: Towards light-induced quantized anomalous hall effect in graphene, Phys. Rev. B 99, 235156 (2019).
  38. O. Dmytruk and M. Trif, Microwave detection of gliding majorana zero modes in nanowires, Phys. Rev. B 107, 115418 (2023).
  39. M. Trif and Y. Tserkovnyak, Resonantly tunable majorana polariton in a microwave cavity, Phys. Rev. Lett. 109, 257002 (2012).
  40. M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79, 013819 (2009).
Citations (4)

Summary

We haven't generated a summary for this paper yet.