Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple and Scalable Nearest Neighbor Machine Translation (2302.12188v1)

Published 23 Feb 2023 in cs.CL

Abstract: $k$NN-MT is a straightforward yet powerful approach for fast domain adaptation, which directly plugs pre-trained neural machine translation (NMT) models with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, $k$NN-MT is burdened with massive storage requirements and high computational complexity since it conducts nearest neighbor searches over the entire reference corpus. In this paper, we propose a simple and scalable nearest neighbor machine translation framework to drastically promote the decoding and storage efficiency of $k$NN-based models while maintaining the translation performance. To this end, we dynamically construct an extremely small datastore for each input via sentence-level retrieval to avoid searching the entire datastore in vanilla $k$NN-MT, based on which we further introduce a distance-aware adapter to adaptively incorporate the $k$NN retrieval results into the pre-trained NMT models. Experiments on machine translation in two general settings, static domain adaptation and online learning, demonstrate that our proposed approach not only achieves almost 90% speed as the NMT model without performance degradation, but also significantly reduces the storage requirements of $k$NN-MT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yuhan Dai (3 papers)
  2. Zhirui Zhang (46 papers)
  3. Qiuzhi Liu (10 papers)
  4. Qu Cui (3 papers)
  5. Weihua Li (43 papers)
  6. Yichao Du (13 papers)
  7. Tong Xu (113 papers)
Citations (16)