Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DMMG: Dual Min-Max Games for Self-Supervised Skeleton-Based Action Recognition (2302.12007v1)

Published 22 Feb 2023 in cs.CV

Abstract: In this work, we propose a new Dual Min-Max Games (DMMG) based self-supervised skeleton action recognition method by augmenting unlabeled data in a contrastive learning framework. Our DMMG consists of a viewpoint variation min-max game and an edge perturbation min-max game. These two min-max games adopt an adversarial paradigm to perform data augmentation on the skeleton sequences and graph-structured body joints, respectively. Our viewpoint variation min-max game focuses on constructing various hard contrastive pairs by generating skeleton sequences from various viewpoints. These hard contrastive pairs help our model learn representative action features, thus facilitating model transfer to downstream tasks. Moreover, our edge perturbation min-max game specializes in building diverse hard contrastive samples through perturbing connectivity strength among graph-based body joints. The connectivity-strength varying contrastive pairs enable the model to capture minimal sufficient information of different actions, such as representative gestures for an action while preventing the model from overfitting. By fully exploiting the proposed DMMG, we can generate sufficient challenging contrastive pairs and thus achieve discriminative action feature representations from unlabeled skeleton data in a self-supervised manner. Extensive experiments demonstrate that our method achieves superior results under various evaluation protocols on widely-used NTU-RGB+D and NTU120-RGB+D datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.