Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hitting Sets when the Shallow Cell Complexity is Small (2302.11637v2)

Published 22 Feb 2023 in cs.CG

Abstract: The hitting set problem is a well-known NP-hard optimization problem in which, given a set of elements and a collection of subsets, the goal is to find the smallest selection of elements, such that each subset contains at least one element in the selection. Many geometric set systems enjoy improved approximation ratios, which have recently been shown to be tight with respect to the shallow cell complexity of the set system. The algorithms that exploit the cell complexity, however, tend to be involved and computationally intensive. This paper shows that a slightly improved asymptotic approximation ratio for the hitting set problem can be attained using a much simpler algorithm: solve the linear programming relaxation, take one initial random sample from the set of elements with probabilities proportional to the LP-solution, and, while there is an unhit set, take an additional sample from it proportional to the LP-solution. Our algorithm is a simple generalization of the elegant net-finder algorithm by Nabil Mustafa. To analyze this algorithm for the hitting set problem, we generalize the classic Packing Lemma, and the more recent Shallow Packing Lemma, to the setting of weighted epsilon-nets.

Summary

We haven't generated a summary for this paper yet.