Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recon: Reducing Conflicting Gradients from the Root for Multi-Task Learning (2302.11289v1)

Published 22 Feb 2023 in cs.LG and cs.AI

Abstract: A fundamental challenge for multi-task learning is that different tasks may conflict with each other when they are solved jointly, and a cause of this phenomenon is conflicting gradients during optimization. Recent works attempt to mitigate the influence of conflicting gradients by directly altering the gradients based on some criteria. However, our empirical study shows that ``gradient surgery'' cannot effectively reduce the occurrence of conflicting gradients. In this paper, we take a different approach to reduce conflicting gradients from the root. In essence, we investigate the task gradients w.r.t. each shared network layer, select the layers with high conflict scores, and turn them to task-specific layers. Our experiments show that such a simple approach can greatly reduce the occurrence of conflicting gradients in the remaining shared layers and achieve better performance, with only a slight increase in model parameters in many cases. Our approach can be easily applied to improve various state-of-the-art methods including gradient manipulation methods and branched architecture search methods. Given a network architecture (e.g., ResNet18), it only needs to search for the conflict layers once, and the network can be modified to be used with different methods on the same or even different datasets to gain performance improvement. The source code is available at https://github.com/moukamisama/Recon.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub