Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster Purging: Efficient Outlier Detection based on Rate-Distortion Theory (2302.11234v1)

Published 22 Feb 2023 in cs.LG

Abstract: Rate-distortion theory-based outlier detection builds upon the rationale that a good data compression will encode outliers with unique symbols. Based on this rationale, we propose Cluster Purging, which is an extension of clustering-based outlier detection. This extension allows one to assess the representivity of clusterings, and to find data that are best represented by individual unique clusters. We propose two efficient algorithms for performing Cluster Purging, one being parameter-free, while the other algorithm has a parameter that controls representivity estimations, allowing it to be tuned in supervised setups. In an experimental evaluation, we show that Cluster Purging improves upon outliers detected from raw clusterings, and that Cluster Purging competes strongly against state-of-the-art alternatives.

Citations (3)

Summary

We haven't generated a summary for this paper yet.