Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debiased Distillation by Transplanting the Last Layer (2302.11187v1)

Published 22 Feb 2023 in cs.LG and cs.CY

Abstract: Deep models are susceptible to learning spurious correlations, even during the post-processing. We take a closer look at the knowledge distillation -- a popular post-processing technique for model compression -- and find that distilling with biased training data gives rise to a biased student, even when the teacher is debiased. To address this issue, we propose a simple knowledge distillation algorithm, coined DeTT (Debiasing by Teacher Transplanting). Inspired by a recent observation that the last neural net layer plays an overwhelmingly important role in debiasing, DeTT directly transplants the teacher's last layer to the student. Remaining layers are distilled by matching the feature map outputs of the student and the teacher, where the samples are reweighted to mitigate the dataset bias. Importantly, DeTT does not rely on the availability of extensive annotations on the bias-related attribute, which is typically not available during the post-processing phase. Throughout our experiments, DeTT successfully debiases the student model, consistently outperforming the baselines in terms of the worst-group accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.