Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on the Daugavet Property for Complex Banach Spaces (2302.11153v4)

Published 22 Feb 2023 in math.FA

Abstract: In this article, we study the Daugavet property and the diametral diameter two properties in complex Banach spaces. The characterizations for both Daugavet and $\Delta$-points are revisited in the context of complex Banach spaces. We also provide relationships between some variants of alternative convexity and smoothness, nonsquareness, and the Daugavet property. As a consequence, every strongly locally uniformly alternatively convex or smooth (sluacs) Banach space does not contain $\Delta$-points from the fact that such spaces are locally uniformly nonsquare. We also study the convex diametral local diameter two property (convex-DLD2P) and the polynomial Daugavet property in the vector-valued function space $A(K, X)$. From an explicit computation of the polynomial Daugavetian index of $A(K, X)$, we show that the space $A(K, X)$ has the polynomial Daugavet property if and only if either the base algebra $A$ or the range space $X$ has the polynomial Daugavet property. Consequently, we obtain that the polynomial Daugavet property, the Daugavet property, the diameteral diameter two properties, and the property ($\mathcal{D}$) are equivalent for infinite-dimensional uniform algebras.

Summary

We haven't generated a summary for this paper yet.