Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On distributional graph signals (2302.11104v1)

Published 22 Feb 2023 in eess.SP

Abstract: Graph signal processing (GSP) studies graph-structured data, where the central concept is the vector space of graph signals. To study a vector space, we have many useful tools up our sleeves. However, uncertainty is omnipresent in practice, and using a vector to model a real signal can be erroneous in some situations. In this paper, we want to use the Wasserstein space as a replacement for the vector space of graph signals, to account for signal stochasticity. The Wasserstein is strictly more general in which the classical graph signal space embeds isometrically. An element in the Wasserstein space is called a distributional graph signal. On the other hand, signal processing for a probability space of graphs has been proposed in the literature. In this work, we propose a unified framework that also encompasses existing theories regarding graph uncertainty. We develop signal processing tools to study the new notion of distributional graph signals. We also demonstrate how the theory can be applied by using real datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.