Papers
Topics
Authors
Recent
2000 character limit reached

Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization

Published 22 Feb 2023 in cs.LG and math.OC | (2302.11076v1)

Abstract: This work is on constrained large-scale non-convex optimization where the constraint set implies a manifold structure. Solving such problems is important in a multitude of fundamental machine learning tasks. Recent advances on Riemannian optimization have enabled the convenient recovery of solutions by adapting unconstrained optimization algorithms over manifolds. However, it remains challenging to scale up and meanwhile maintain stable convergence rates and handle saddle points. We propose a new second-order Riemannian optimization algorithm, aiming at improving convergence rate and reducing computational cost. It enhances the Riemannian trust-region algorithm that explores curvature information to escape saddle points through a mixture of subsampling and cubic regularization techniques. We conduct rigorous analysis to study the convergence behavior of the proposed algorithm. We also perform extensive experiments to evaluate it based on two general machine learning tasks using multiple datasets. The proposed algorithm exhibits improved computational speed and convergence behavior compared to a large set of state-of-the-art Riemannian optimization algorithms.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.