Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-decentralized Federated Ego Graph Learning for Recommendation (2302.10900v1)

Published 10 Feb 2023 in cs.LG, cs.AI, and cs.IR

Abstract: Collaborative filtering (CF) based recommender systems are typically trained based on personal interaction data (e.g., clicks and purchases) that could be naturally represented as ego graphs. However, most existing recommendation methods collect these ego graphs from all users to compose a global graph to obtain high-order collaborative information between users and items, and these centralized CF recommendation methods inevitably lead to a high risk of user privacy leakage. Although recently proposed federated recommendation systems can mitigate the privacy problem, they either restrict the on-device local training to an isolated ego graph or rely on an additional third-party server to access other ego graphs resulting in a cumbersome pipeline, which is hard to work in practice. In addition, existing federated recommendation systems require resource-limited devices to maintain the entire embedding tables resulting in high communication costs. In light of this, we propose a semi-decentralized federated ego graph learning framework for on-device recommendations, named SemiDFEGL, which introduces new device-to-device collaborations to improve scalability and reduce communication costs and innovatively utilizes predicted interacted item nodes to connect isolated ego graphs to augment local subgraphs such that the high-order user-item collaborative information could be used in a privacy-preserving manner. Furthermore, the proposed framework is model-agnostic, meaning that it could be seamlessly integrated with existing graph neural network-based recommendation methods and privacy protection techniques. To validate the effectiveness of the proposed SemiDFEGL, extensive experiments are conducted on three public datasets, and the results demonstrate the superiority of the proposed SemiDFEGL compared to other federated recommendation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Liang Qu (22 papers)
  2. Ningzhi Tang (5 papers)
  3. Ruiqi Zheng (11 papers)
  4. Quoc Viet Hung Nguyen (57 papers)
  5. Zi Huang (126 papers)
  6. Yuhui Shi (44 papers)
  7. Hongzhi Yin (210 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.