Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction (2302.10873v3)
Abstract: Real-time, accurate prediction of human steering behaviors has wide applications, from developing intelligent traffic systems to deploying autonomous driving systems in both real and simulated worlds. In this paper, we present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction. Built upon the backbone architecture of a timewise variational autoencoder, ContextVAE observation encoding employs a dual attention mechanism that accounts for the environmental context and the dynamic agents' states, in a unified way. By utilizing features extracted from semantic maps during agent state encoding, our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints to generate map-compliant and socially-aware trajectories. We perform extensive testing on the nuScenes prediction challenge, Lyft Level 5 dataset and Waymo Open Motion Dataset to show the effectiveness of our approach and its state-of-the-art performance. In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time. Our code is available at: https://github.com/xupei0610/ContextVAE.
- H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2020, pp. 11 621–11 631.
- J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska, “One thousand and one hours: Self-driving motion prediction dataset,” in Conf. Robot Learn., 2021, pp. 409–418.
- S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov, “Large scale interactive motion forecasting for autonomous driving: The Waymo open motion dataset,” in IEEE Int. Conf. Comput. Vis., 2021, pp. 9710–9719.
- S. Kolekar, S. Gite, B. Pradhan, and K. Kotecha, “Behavior prediction of traffic actors for intelligent vehicle using artificial intelligence techniques: A review,” IEEE Access, vol. 9, pp. 135 034–135 058, 2021.
- S. Konev, K. Brodt, and A. Sanakoyeu, “MotionCNN: A strong baseline for motion prediction in autonomous driving,” in IEEE Conf. Comp. Vis. Patt. Recogn. Workshops, 2021.
- Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A survey on trajectory-prediction methods for autonomous driving,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 652–674, 2022.
- A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birchfield, D. Nistér, and N. Smolyanskiy, “PredictionNet: Real-time joint probabilistic traffic prediction for planning, control, and simulation,” in IEEE Int. Conf. Robot. Autom., 2022.
- N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M. Chandraker, “Desire: Distant future prediction in dynamic scenes with interacting agents,” IEEE Conf. Comp. Vis. Patt. Recogn., pp. 2165–2174, 2017.
- T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in European Conf. Comput. Vis., 2020, pp. 683–700.
- Y. Yao, E. Atkins, M. Johnson-Roberson, R. Vasudevan, and X. Du, “BiTraP: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1463–1470, 2021.
- P. Xu, J.-B. Hayet, and I. Karamouzas, “SocialVAE: Human trajectory prediction using timewise latents,” in European Conf. Comput. Vis., 2022, pp. 511–528.
- J. L. V. Espinoza, A. Liniger, W. Schwarting, D. Rus, and L. Van Gool, “Deep interactive motion prediction and planning: Playing games with motion prediction models,” in Learning for Dynamics and Control Conference, 2022, pp. 1006–1019.
- A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese, “SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2019, pp. 1349–1358.
- A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human trajectory prediction in crowded spaces,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2016, pp. 961–971.
- A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially acceptable trajectories with generative adversarial networks,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2018, pp. 2255–2264.
- ——, “Social GAN: Socially acceptable trajectories with generative adversarial networks,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2018, pp. 2255–2264.
- J. Amirian, J.-B. Hayet, and J. Pettré, “Social Ways: Learning multi-modal distributions of pedestrian trajectories with GANs,” in IEEE Conf. Comp. Vis. Patt. Recogn. Workshops, 2019.
- N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory prediction,” in IEEE Conf. Comp. Vis. Patt. Recogn. Workshops, 2018, pp. 1468–1476.
- N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “PRECOG: Prediction conditioned on goals in visual multi-agent settings,” in IEEE Int. Conf. Comput. Vis., October 2019.
- A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: a survey,” Int. J. Rob. Res., vol. 39, no. 8, pp. 895–935, 2020.
- T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “CoverNet: Multimodal behavior prediction using trajectory sets,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2020, pp. 14 074–14 083.
- Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction,” arXiv preprint arXiv:1910.05449, 2019.
- H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions for autonomous driving using deep convolutional networks,” in IEEE Int. Conf. Robot. Autom., 2019, pp. 2090–2096.
- N. Deo and M. M. Trivedi, “Trajectory forecasts in unknown environments conditioned on grid-based plans,” arXiv preprint arXiv:2001.00735, 2020.
- R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and C. Pal, “Latent variable sequential set transformers for joint multi-agent motion prediction,” in Int. Conf. Learn. Repres., 2021.
- L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and M. Marchetti-Bowick, “Map-adaptive goal-based trajectory prediction,” in Conf. Robot Learn., 2021, pp. 1371–1383.
- X. Huang, S. G. McGill, J. A. DeCastro, L. Fletcher, J. J. Leonard, B. C. Williams, and G. Rosman, “DiversityGAN: Diversity-aware vehicle motion prediction via latent semantic sampling,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5089–5096, 2020.
- C. Wang, Y. Wang, M. Xu, and D. Crandall, “Stepwise goal-driven networks for trajectory prediction,” IEEE Robot. Autom. Lett., 2022.
- J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “VectorNet: Encoding HD maps and agent dynamics from vectorized representation,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2020, pp. 11 525–11 533.
- M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning lane graph representations for motion forecasting,” in European Conf. Comput. Vis. Springer, 2020, pp. 541–556.
- S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” Advances in Neural Information Processing Systems, 2022.
- T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde, “Gohome: Graph-oriented heatmap output for future motion estimation,” in IEEE Int. Conf. Robot. Autom., 2022, pp. 9107–9114.
- Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang, “Query-centric trajectory prediction,” in Proceedings of the IEEE Conf. Comp. Vis. Patt. Recogn., 2023, pp. 17 863–17 873.
- S. Khandelwal, W. Qi, J. Singh, A. Hartnett, and D. Ramanan, “What-if motion prediction for autonomous driving,” arXiv preprint arXiv:2008.10587, 2020.
- B. Kim, S. H. Park, S. Lee, E. Khoshimjonov, D. Kum, J. Kim, J. S. Kim, and J. W. Choi, “LaPred: Lane-aware prediction of multi-modal future trajectories of dynamic agents,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2021, pp. 14 636–14 645.
- C. Luo, L. Sun, D. Dabiri, and A. Yuille, “Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles,” in IEEE/RSJ Int. Conf. Intell. Robots Syst.., 2020, pp. 2370–2376.
- H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid et al., “TNT: Target-driven trajectory prediction,” in Conf. Robot Learn., 2021, pp. 895–904.
- Q. Sun, X. Huang, J. Gu, B. C. Williams, and H. Zhao, “M2I: From factored marginal trajectory prediction to interactive prediction,” in IEEE Conf. Comp. Vis. Patt. Recogn., 2022, pp. 6543–6552.
- N. Deo, E. Wolff, and O. Beijbom, “Multimodal trajectory prediction conditioned on lane-graph traversals,” in Conf. Robot Learn., 2021.
- B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov et al., “Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction,” in IEEE Int. Conf. Robot. Autom., 2022, pp. 7814–7821.
- S. Casas, C. Gulino, S. Suo, and R. Urtasun, “The importance of prior knowledge in precise multimodal prediction,” in IEEE/RSJ Int. Conf. Intell. Robots Syst.., 2020, pp. 2295–2302.
- W. Zeng, M. Liang, R. Liao, and R. Urtasun, “LaneRCNN: Distributed representations for graph-centric motion forecasting,” in IEEE/RSJ Int. Conf. Intell. Robots Syst.., 2021, pp. 532–539.
- T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde, “Home: Heatmap output for future motion estimation,” in IEEE Int. Intell. Transp. Syst. Conf., 2021, pp. 500–507.
- J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal et al., “Scene Transformer: A unified architecture for predicting future trajectories of multiple agents,” in Int. Conf. Learn. Repres., 2021.
- M. Liu, H. Cheng, L. Chen, H. Broszio, J. Li, R. Zhao, M. Sester, and M. Y. Yang, “Laformer: Trajectory prediction for autonomous driving with lane-aware scene constraints,” arXiv preprint arXiv:2302.13933, 2023.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in IEEE Int. Conf. Comput. Vis, 2017, pp. 618–626.
- Pei Xu (18 papers)
- Jean-Bernard Hayet (10 papers)
- Ioannis Karamouzas (13 papers)