Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network (2302.10804v1)

Published 28 Jan 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Identifying causal relations among multi-variate time series is one of the most important elements towards understanding the complex mechanisms underlying the dynamic system. It provides critical tools for forecasting, simulations and interventions in science and business analytics. In this paper, we proposed a graph neural network approach with score-based method aiming at learning a sparse DAG that captures the causal dependencies in a discretized time temporal graph. We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference. In addition, from the experiments, the structural causal model can be more accurate than a linear SCM discovered by the methods such as Notears.

Citations (1)

Summary

We haven't generated a summary for this paper yet.