Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning 3D Photography Videos via Self-supervised Diffusion on Single Images (2302.10781v1)

Published 21 Feb 2023 in cs.CV

Abstract: 3D photography renders a static image into a video with appealing 3D visual effects. Existing approaches typically first conduct monocular depth estimation, then render the input frame to subsequent frames with various viewpoints, and finally use an inpainting model to fill those missing/occluded regions. The inpainting model plays a crucial role in rendering quality, but it is normally trained on out-of-domain data. To reduce the training and inference gap, we propose a novel self-supervised diffusion model as the inpainting module. Given a single input image, we automatically construct a training pair of the masked occluded image and the ground-truth image with random cycle-rendering. The constructed training samples are closely aligned to the testing instances, without the need of data annotation. To make full use of the masked images, we design a Masked Enhanced Block (MEB), which can be easily plugged into the UNet and enhance the semantic conditions. Towards real-world animation, we present a novel task: out-animation, which extends the space and time of input objects. Extensive experiments on real datasets show that our method achieves competitive results with existing SOTA methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.