Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

I2V: Towards Texture-Aware Self-Supervised Blind Denoising using Self-Residual Learning for Real-World Images (2302.10523v1)

Published 21 Feb 2023 in cs.CV and eess.IV

Abstract: Although the advances of self-supervised blind denoising are significantly superior to conventional approaches without clean supervision in synthetic noise scenarios, it shows poor quality in real-world images due to spatially correlated noise corruption. Recently, pixel-shuffle downsampling (PD) has been proposed to eliminate the spatial correlation of noise. A study combining a blind spot network (BSN) and asymmetric PD (AP) successfully demonstrated that self-supervised blind denoising is applicable to real-world noisy images. However, PD-based inference may degrade texture details in the testing phase because high-frequency details (e.g., edges) are destroyed in the downsampled images. To avoid such an issue, we propose self-residual learning without the PD process to maintain texture information. We also propose an order-variant PD constraint, noise prior loss, and an efficient inference scheme (progressive random-replacing refinement ($\text{PR}3$)) to boost overall performance. The results of extensive experiments show that the proposed method outperforms state-of-the-art self-supervised blind denoising approaches, including several supervised learning methods, in terms of PSNR, SSIM, LPIPS, and DISTS in real-world sRGB images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kanggeun Lee (4 papers)
  2. Kyungryun Lee (3 papers)
  3. Won-Ki Jeong (21 papers)

Summary

We haven't generated a summary for this paper yet.