An exponentially shrinking problem (2302.10379v2)
Abstract: The Jarn\'ik-Besicovitch theorem is a fundamental result in metric number theory which gives the Hausdorff dimension for limsup sets. We investigate a related problem of estimating the Hausdorff dimension of a liminf set. Let $h>0, \tau\geq 1$, and for any $j\geq 1$ define the integer sequence $q_{j+1}=q_jh$. We prove the Hausdorff dimension of the set $$\Lambda\bftheta_d(\tau)=\left{\xx\in[0, 1)d: |q_jx_i-\theta_i|<q_j{-\tau} \ \text{for all } j\geq 1, i=1,2,\cdots,d\right},$$ where $\left|\star\right|$ denotes the distance to the nearest integer and $\bftheta\in [0, 1)d$ is fixed. We also give some heuristics for the Hausdorff dimension of the corresponding multiplicative set $$\MM_d\bftheta(\tau)=\left{\xx\in[0, 1)d:\prod_{i=1}d |q_jx_i-\theta_i|<q_j{-\tau} \ \text{for all } j\geq 1\right}.$$