Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning in Brain Tumor Segmentation with Uncertainty Sampling, Annotation Redundancy Restriction, and Data Initialization (2302.10185v1)

Published 5 Feb 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Deep learning models have demonstrated great potential in medical 3D imaging, but their development is limited by the expensive, large volume of annotated data required. Active learning (AL) addresses this by training a model on a subset of the most informative data samples without compromising performance. We compared different AL strategies and propose a framework that minimizes the amount of data needed for state-of-the-art performance. 638 multi-institutional brain tumor MRI images were used to train a 3D U-net model and compare AL strategies. We investigated uncertainty sampling, annotation redundancy restriction, and initial dataset selection techniques. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotation redundancy by removing similar images within the to-be-annotated subset were considered as well. We determined the minimum amount of data necessary to achieve similar performance to the model trained on the full dataset ({\alpha} = 0.1). A variance-based selection strategy using radiomics to identify the initial training dataset is also proposed. Bayesian approximation with dropout at training and testing showed similar results to that of the full data model with less than 20% of the training data (p=0.293) compared to random query achieving similar performance at 56.5% of the training data (p=0.814). Annotation redundancy restriction techniques achieved state-of-the-art performance at approximately 40%-50% of the training data. Radiomics dataset initialization had higher Dice with initial dataset sizes of 20 and 80 images, but improvements were not significant. In conclusion, we investigated various AL strategies with dropout uncertainty estimation achieving state-of-the-art performance with the least annotated data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (17)
  1. Daniel D Kim (1 paper)
  2. Rajat S Chandra (1 paper)
  3. Jian Peng (101 papers)
  4. Jing Wu (182 papers)
  5. Xue Feng (69 papers)
  6. Michael Atalay (2 papers)
  7. Chetan Bettegowda (3 papers)
  8. Craig Jones (7 papers)
  9. Haris Sair (1 paper)
  10. Wei-hua Liao (1 paper)
  11. Chengzhang Zhu (6 papers)
  12. Beiji Zou (21 papers)
  13. Li Yang (273 papers)
  14. Anahita Fathi Kazerooni (16 papers)
  15. Ali Nabavizadeh (7 papers)
  16. Zhicheng Jiao (25 papers)
  17. Harrison X Bai (1 paper)
Citations (4)

Summary

We haven't generated a summary for this paper yet.