Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Simple U-net Based Synthetic Polyp Image Generation: Polyp to Negative and Negative to Polyp (2302.09835v1)

Published 20 Feb 2023 in eess.IV and cs.CV

Abstract: Synthetic polyp generation is a good alternative to overcome the privacy problem of medical data and the lack of various polyp samples. In this study, we propose a deep learning-based polyp image generation framework that generates synthetic polyp images that are similar to real ones. We suggest a framework that converts a given polyp image into a negative image (image without a polyp) using a simple conditional GAN architecture and then converts the negative image into a new-looking polyp image using the same network. In addition, by using the controllable polyp masks, polyps with various characteristics can be generated from one input condition. The generated polyp images can be used directly as training images for polyp detection and segmentation without additional labeling. To quantitatively assess the quality of generated synthetic polyps, we use public polyp image and video datasets combined with the generated synthetic images to examine the performance improvement of several detection and segmentation models. Experimental results show that we obtain performance gains when the generated polyp images are added to the training set.

Citations (4)

Summary

We haven't generated a summary for this paper yet.