Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gibbs Sampler for Matrix Generalized Inverse Gaussian Distributions

Published 20 Feb 2023 in stat.ME and stat.CO | (2302.09707v1)

Abstract: Sampling from matrix generalized inverse Gaussian (MGIG) distributions is required in Markov Chain Monte Carlo (MCMC) algorithms for a variety of statistical models. However, an efficient sampling scheme for the MGIG distributions has not been fully developed. We here propose a novel blocked Gibbs sampler for the MGIG distributions, based on the Choleski decomposition. We show that the full conditionals of the diagonal and unit lower-triangular entries are univariate generalized inverse Gaussian and multivariate normal distributions, respectively. Several variants of the Metropolis-Hastings algorithm can also be considered for this problem, but we mathematically prove that the average acceptance rates become extremely low in particular scenarios. We demonstrate the computational efficiency of the proposed Gibbs sampler through simulation studies and data analysis.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.