2000 character limit reached
$H^p$-Norm estimates of the partial derivatives and Schwarz lemma for $α$-harmonic functions (2302.09613v1)
Published 19 Feb 2023 in math.CV
Abstract: Suppose $\alpha>-1$ and $1\leq p \leq \infty$. Let $f=P_{\alpha}[F]$ be an $\alpha$-harmonic mapping on $\mathbb{D}$ with the boundary $F$ being absolute continuous and $\dot{F}\in Lp(0,2\pi)$, where $\dot{F}(e{i\theta}):=\frac{dF(e{i\theta})}{d\theta}$. In this paper, we investigate the membership of $f_z$ and $f_{\overline{z}}$ in the space $\mathcal{H}{\mathcal{G}}{p}(\mathbb{D})$, the generalized Hardy space. We prove, if $\alpha>0$, then both $f_z$ and $f{\overline{z}}$ are in $\mathcal{H}{\mathcal{G}}{p}(\mathbb{D})$. If $\alpha<0$, then $f_z$ and $f{\overline{z}}\in \mathcal{H}_{\mathcal{G}}{p}(\mathbb{D})$ if and only if $f$ is analytic. Finally, we investigate a Schwartz Lemma for $\alpha$-harmonic functions.