Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Private Task Assignment under Differential Privacy (2302.09511v1)

Published 19 Feb 2023 in cs.CR and cs.DB

Abstract: Data collection is indispensable for spatial crowdsourcing services, such as resource allocation, policymaking, and scientific explorations. However, privacy issues make it challenging for users to share their information unless receiving sufficient compensation. Differential Privacy (DP) is a promising mechanism to release helpful information while protecting individuals' privacy. However, most DP mechanisms only consider a fixed compensation for each user's privacy loss. In this paper, we design a task assignment scheme that allows workers to dynamically improve their utility with dynamic distance privacy leakage. Specifically, we propose two solutions to improve the total utility of task assignment results, namely Private Utility Conflict-Elimination (PUCE) approach and Private Game Theory (PGT) approach, respectively. We prove that PUCE achieves higher utility than the state-of-the-art works. We demonstrate the efficiency and effectiveness of our PUCE and PGT approaches on both real and synthetic data sets compared with the recent distance-based approach, Private Distance Conflict-Elimination (PDCE). PUCE is always better than PDCE slightly. PGT is 50% to 63% faster than PDCE and can improve 16% utility on average when worker range is large enough.

Citations (1)

Summary

We haven't generated a summary for this paper yet.