Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Picture May Be Worth a Thousand Lives: An Interpretable Artificial Intelligence Strategy for Predictions of Suicide Risk from Social Media Images (2302.09488v1)

Published 19 Feb 2023 in cs.AI, cs.CV, and cs.CY

Abstract: The promising research on Artificial Intelligence usages in suicide prevention has principal gaps, including black box methodologies, inadequate outcome measures, and scarce research on non-verbal inputs, such as social media images (despite their popularity today, in our digital era). This study addresses these gaps and combines theory-driven and bottom-up strategies to construct a hybrid and interpretable prediction model of valid suicide risk from images. The lead hypothesis was that images contain valuable information about emotions and interpersonal relationships, two central concepts in suicide-related treatments and theories. The dataset included 177,220 images by 841 Facebook users who completed a gold-standard suicide scale. The images were represented with CLIP, a state-of-the-art algorithm, which was utilized, unconventionally, to extract predefined features that served as inputs to a simple logistic-regression prediction model (in contrast to complex neural networks). The features addressed basic and theory-driven visual elements using everyday language (e.g., bright photo, photo of sad people). The results of the hybrid model (that integrated theory-driven and bottom-up methods) indicated high prediction performance that surpassed common bottom-up algorithms, thus providing a first proof that images (alone) can be leveraged to predict validated suicide risk. Corresponding with the lead hypothesis, at-risk users had images with increased negative emotions and decreased belonginess. The results are discussed in the context of non-verbal warning signs of suicide. Notably, the study illustrates the advantages of hybrid models in such complicated tasks and provides simple and flexible prediction strategies that could be utilized to develop real-life monitoring tools of suicide.

Citations (4)

Summary

We haven't generated a summary for this paper yet.