Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vulnerability analysis of captcha using Deep learning (2302.09389v2)

Published 18 Feb 2023 in cs.CR, cs.AI, cs.CV, and cs.LG

Abstract: Several websites improve their security and avoid dangerous Internet attacks by implementing CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart), a type of verification to identify whether the end-user is human or a robot. The most prevalent type of CAPTCHA is text-based, designed to be easily recognized by humans while being unsolvable towards machines or robots. However, as deep learning technology progresses, development of convolutional neural network (CNN) models that predict text-based CAPTCHAs becomes easier. The purpose of this research is to investigate the flaws and vulnerabilities in the CAPTCHA generating systems in order to design more resilient CAPTCHAs. To achieve this, we created CapNet, a Convolutional Neural Network. The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs

Citations (2)

Summary

We haven't generated a summary for this paper yet.