Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elimination ideal and bivariate resultant over finite fields (2302.08891v1)

Published 17 Feb 2023 in cs.SC

Abstract: A new algorithm is presented for computing the largest degree invariant factor of the Sylvester matrix (with respect either to $x$ or $y$) associated to two polynomials $a$ and $b$ in $\mathbb F_q[x,y]$ which have no non-trivial common divisors. The algorithm is randomized of the Monte Carlo type and requires $O((de){1+\epsilon}\log(q) {1+o(1)})$ bit operations, where $d$ an $e$ respectively bound the input degrees in $x$ and in $y$. It follows that the same complexity estimate is valid for computing: a generator of the elimination ideal $\langle a,b \rangle \cap \mathbb F_q[x]$ (or $\mathbb F_q[y]$), as soon as the polynomial system $a=b=0$ has not roots at infinity; the resultant of $a$ and $b$ when they are sufficiently generic, especially so that the Sylvester matrix has a unique non-trivial invariant factor. Our approach is to use the reduction of the problem to a problem of minimal polynomial in the quotient algebra $\mathbb F_q[x,y]/\langle a,b \rangle$. By proposing a new method based on structured polynomial matrix division for computing with the elements in the quotient, we manage to improve the best known complexity bounds.

Citations (5)

Summary

We haven't generated a summary for this paper yet.