Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence rates for critical point regularization (2302.08830v1)

Published 17 Feb 2023 in math.OC, cs.NA, and math.NA

Abstract: Tikhonov regularization involves minimizing the combination of a data discrepancy term and a regularizing term, and is the standard approach for solving inverse problems. The use of non-convex regularizers, such as those defined by trained neural networks, has been shown to be effective in many cases. However, finding global minimizers in non-convex situations can be challenging, making existing theory inapplicable. A recent development in regularization theory relaxes this requirement by providing convergence based on critical points instead of strict minimizers. This paper investigates convergence rates for the regularization with critical points using Bregman distances. Furthermore, we show that when implementing near-minimization through an iterative algorithm, a finite number of iterations is sufficient without affecting convergence rates.

Citations (5)

Summary

We haven't generated a summary for this paper yet.