Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with Rejection for Abstractive Text Summarization (2302.08531v1)

Published 16 Feb 2023 in cs.CL

Abstract: State-of-the-art abstractive summarization systems frequently hallucinate content that is not supported by the source document, mainly due to noise in the training dataset. Existing methods opt to drop the noisy samples or tokens from the training set entirely, reducing the effective training set size and creating an artificial propensity to copy words from the source. In this work, we propose a training objective for abstractive summarization based on rejection learning, in which the model learns whether or not to reject potentially noisy tokens. We further propose a regularized decoding objective that penalizes non-factual candidate summaries during inference by using the rejection probability learned during training. We show that our method considerably improves the factuality of generated summaries in automatic and human evaluations when compared to five baseline models and that it does so while increasing the abstractiveness of the generated summaries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Meng Cao (107 papers)
  2. Yue Dong (61 papers)
  3. Jingyi He (5 papers)
  4. Jackie Chi Kit Cheung (57 papers)
Citations (6)