Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent spinor fields from exotic spin structures (2302.08473v3)

Published 16 Feb 2023 in hep-th, math-ph, and math.MP

Abstract: The classification of emergent spinor fields according to modified bilinear covariants is scrutinized, in spacetimes with nontrivial topology, which induce inequivalent spin structures. Extended Clifford algebras, constructed by equipping the underlying spacetime with an extended bilinear form with additional terms coming from the nontrivial topology, naturally yield emergent extended algebraic spinor fields and their subsequent extended bilinear covariants, which are contrasted to the classical spinor classification. An unexpected duality between the standard and the exotic spinor field classes is therefore established, showing that a complementary fusion process among the spinor field classes sets in, when extended Clifford bundles are addressed in multiply-connected spacetimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Vaz Jr. and R. da Rocha, “An Introduction to Clifford Algebras and Spinors,” Oxford Univ. Press, Oxford, 2016.
  2. C. Chevalley, “The Algebraic Theory of Spinors”, Columbia Univ. Press, New York, 1954.
  3. P. Lounesto, “Clifford Algebras and Spinors”, Lond. Math. Soc. Lect. Note Ser. 239 (1997) 1.
  4. L. Bonora and R. da Rocha, JHEP 01 (2016) 133 [arXiv:1508.01357 [hep-th]].
  5. R. T. Cavalcanti, Int. J. Mod. Phys. D 23 (2014) 1444002 [arXiv:1408.0720 [hep-th]].
  6. L. Fabbri, J. Math. Phys. 54 (2013) 062501 [arXiv:1104.5002 [gr-qc]].
  7. P. Meert and R. da Rocha, Eur. Phys. J. C 78 (2018) 1012 [arXiv:1809.01104 [hep-th]].
  8. D. Beghetto and J. M. Hoff da Silva, EPL 119 (2017) 40006 [arXiv:1710.07086 [math-ph]].
  9. R. da Rocha and A. A. Tomaz, J. Phys. A 53 (2020) 465201 [arXiv:2003.03619 [hep-th]].
  10. C. J. Isham, Proc. Roy. Soc. Lond. A 364 (1978) 591.
  11. S. J. Avis and C. J. Isham, Nucl. Phys. B 156 (1979) 441.
  12. C. J. Isham, Proc. R. Soc. London A 362 (1978) 383.
  13. R. P. Geroch, J. Math. Phys. 9 (1968) 1739.
  14. R. P. Geroch, J. Math. Phys. 11 (1970) 343.
  15. S. W. Hawking and C. N. Pope, Phys. Lett. B 73 (1978) 42.
  16. S. W. Hawking, Nucl. Phys. B 144 (1978) 349.
  17. N. Seiberg and E. Witten, Nucl. Phys. B 276 (1986) 272.
  18. S. J. Avis and C. J. Isham, Commun. Math. Phys. 72 (1980) 103.
  19. S. M. Christensen and M. J. Duff, Nucl. Phys. B 146 (1978) 11.
  20. H. R. Petry, J. Math. Phys. 20 (1979) 231.
  21. M. Luscher, Phys. Lett. B 70 (1977) 321.
  22. R. Sasaki, Phys. Lett. B 80 (1978) 61.
  23. B. M. Schechter, Phys. Rev. D 16 (1977) 3015.
  24. S. D. Unwin, J. Phys. A 12 (1979) L309.
  25. S. D. Unwin, J. Phys. A 13 (1980) 313.
  26. L. H. Ford, Phys. Rev. D 21 (1980) 933.
  27. L. H. Ford, Phys. Rev. D 21 (1980) 949.
  28. L. Fabbri and R. J. B. Rogerio, Eur. Phys. J. C 80 (2020) 880 [arXiv:2004.14155 [physics.gen-ph]].
  29. R. da Rocha and J. G. Pereira, Int. J. Mod. Phys. D 16 (2007) 1653 [arXiv:gr-qc/0703076 [gr-qc]].
  30. J. P. Crawford, J. Math. Phys. 26 (1985) 1439.
  31. P. R. Holland, Found. Phys. 16 (1986) 708.
  32. R. A. Mosna and J. Vaz, Phys. Lett. A 315 (2003) 418 [arXiv:quant-ph/0303072].
  33. Y. Takahashi, Phys. Rev. D 26 (1982) 2169.
  34. Y. Takahashi, Prog. Theor. Phys. 69 (1983) 369.
  35. R. A. Mosna and W. A. Rodrigues J. Math. Phys. 45 (2004) 2945 [arXiv:math-ph/0212033 [math-ph]].

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com