Interpretable Deep Learning Methods for Multiview Learning (2302.07930v2)
Abstract: Technological advances have enabled the generation of unique and complementary types of data or views (e.g. genomics, proteomics, metabolomics) and opened up a new era in multiview learning research with the potential to lead to new biomedical discoveries. We propose iDeepViewLearn (Interpretable Deep Learning Method for Multiview Learning) for learning nonlinear relationships in data from multiple views while achieving feature selection. iDeepViewLearn combines deep learning flexibility with the statistical benefits of data and knowledge-driven feature selection, giving interpretable results. Deep neural networks are used to learn view-independent low-dimensional embedding through an optimization problem that minimizes the difference between observed and reconstructed data, while imposing a regularization penalty on the reconstructed data. The normalized Laplacian of a graph is used to model bilateral relationships between variables in each view, therefore, encouraging selection of related variables. iDeepViewLearn is tested on simulated and two real-world data, including breast cancer-related gene expression and methylation data. iDeepViewLearn had competitive classification results and identified genes and CpG sites that differentiated between individuals who died from breast cancer and those who did not. The results of our real data application and simulations with small to moderate sample sizes suggest that iDeepViewLearn may be a useful method for small-sample-size problems compared to other deep learning methods for multiview learning.
- Safo, S.E., Ahn, J., Jeon, Y., Jung, S.: Sparse generalized eigenvalue problem with application to canonical correlation analysis for integrative analysis of methylation and gene expression data. Biometrics 74(4), 1362–1371 (2018) Akaho [2001] Akaho, S.: A kernel method for canonical correlation analysis. Int’l Meeting on Psychometric Society (2001) Lopez-Paz et al. [2014] Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Akaho, S.: A kernel method for canonical correlation analysis. Int’l Meeting on Psychometric Society (2001) Lopez-Paz et al. [2014] Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Akaho, S.: A kernel method for canonical correlation analysis. Int’l Meeting on Psychometric Society (2001) Lopez-Paz et al. [2014] Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.: Randomized nonlinear component analysis. In: International Conference on Machine Learning, pp. 1359–1367 (2014). PMLR Andrew et al. [2013] Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. Journal of Machine Learning Research: Workshop and Conference Proceedings (2013) Benton et al. [2019] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6 (2019) Lee and van der Schaar [2021] Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Lee, C., Schaar, M.: A variational information bottleneck approach to multi-omics data integration. In: International Conference on Artificial Intelligence and Statistics, pp. 1513–1521 (2021). PMLR Moon and Lee [2022] Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Moon, S., Lee, H.: MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Bioinformatics 38(8), 2287–2296 (2022) https://doi.org/10.1093/bioinformatics/btac080 https://academic.oup.com/bioinformatics/article-pdf/38/8/2287/43370240/btac080.pdf Wang and Safo [2021] Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Wang, J., Safo, S.E.: Deep ida: A deep learning method for integrative discriminant analysis of multi-view data with feature ranking–an application to covid-19 severity. ArXiv, 2111 (2021) Safo et al. [2021] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458 https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458 Safo et al. [2018] Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Safo, S.E., Li, S., Long, Q.: Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information. Biometrics 74(1), 300–312 (2018) Wang et al. [2021] Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., Sun, J.: Early Stopping for Deep Image Prior (2021) https://doi.org/10.48550/ARXIV.2112.06074 . Publisher: arXiv Version Number: 4 Chen et al. [2023] Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Chen, Z., Yang, R., Fu, S., Zong, N., Liu, H., Huang, M.: Detecting Reddit Users with Depression Using a Hybrid Neural Network SBERT-CNN (2023) https://doi.org/10.48550/ARXIV.2302.02759 . Publisher: arXiv Version Number: 2 Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996) Zou and Hastie [2005] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2), 301–320 (2005) Fan and Li [2001] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 1348–1360 (2001) Nie et al. [2010] Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint 𝓁𝓁\mathscr{l}script_l2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a Meeting Held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 1813–1821. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.cc/paper/2010/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html Peri et al. [2003] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome research 13(10), 2363–2371 (2003) Chung and Graham [1997] Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Chung, F.R., Graham, F.C.: Spectral Graph Theory. American Mathematical Soc., ??? (1997) Ben-Hur et al. [2008] Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS computational biology 4(10), 1000173 (2008) Breiman [2001] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) https://doi.org/10.1023/A:1010933404324 Mirzaei et al. [2020] Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Mirzaei, A., Pourahmadi, V., Soltani, M., Sheikhzadeh, H.: Deep feature selection using a teacher-student network. Neurocomputing 383, 396–408 (2020) Mohammadi and Wit [2015] Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Mohammadi, R., Wit, E.C.: Bdgraph: An r package for bayesian structure learning in graphical models. arXiv preprint arXiv:1501.05108 (2015) Holm et al. [2010] Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Holm, K., Hegardt, C., Staaf, J., Vallon-Christersson, J., Jönsson, G., Olsson, H., Borg, Å., Ringnér, M.: Molecular subtypes of breast cancer are associated with characteristic dna methylation patterns. Breast cancer research 12(3), 1–16 (2010) Giaquinto et al. [2022] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., Jemal, A., Siegel, R.L.: Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians 72(6), 524–541 (2022) Lustberg and Ramaswamy [2011] Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Lustberg, M.B., Ramaswamy, B.: Epigenetic therapy in breast cancer. Current breast cancer reports 3, 34–43 (2011) Järvinen and Prince [2015] Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Järvinen, T.A., Prince, S.: Decorin: a growth factor antagonist for tumor growth inhibition. BioMed research international 2015 (2015) Oparina et al. [2021] Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Oparina, N., Erlandsson, M.C., Beding, A.F., Parris, T., Helou, K., Karlsson, P., Einbeigi, Z., Bokarewa, M.I.: Prognostic significance of birc5/survivin in breast cancer: results from three independent cohorts. Cancers 13(9), 2209 (2021) Li et al. [1998] Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., Altieri, D.C.: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998) Shiiba et al. [2015] Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Shiiba, M., Saito, K., Yamagami, H., Nakashima, D., Higo, M., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., et al.: Interleukin-1 receptor antagonist (il1rn) is associated with suppression of early carcinogenic events in human oral malignancies. International Journal of Oncology 46(5), 1978–1984 (2015) Chen et al. [2009] Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research 37(suppl_2), 305–311 (2009) Naba et al. [2016] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology 49, 10–24 (2016) Henke et al. [2020] Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Henke, E., Nandigama, R., Ergün, S.: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Frontiers in molecular biosciences, 160 (2020) Wang et al. [2021] Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., Huang, K.: MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications 12(1), 3445 (2021) https://doi.org/10.1038/s41467-021-23774-w Benton et al. [2017] Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Benton, A., Khayrallah, H., Gujral, B., Reisinger, D.A., Zhang, S., Arora, R.: Deep Generalized Canonical Correlation Analysis. arXiv. arXiv:1702.02519 [cs, stat] (2017). http://arxiv.org/abs/1702.02519 Lecun et al. [1998] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791 Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791
- Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) https://doi.org/10.1109/5.726791