Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Anomaly Detection via Batch Normalization (2302.07849v4)

Published 15 Feb 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Anomaly detection (AD) plays a crucial role in many safety-critical application domains. The challenge of adapting an anomaly detector to drift in the normal data distribution, especially when no training data is available for the "new normal," has led to the development of zero-shot AD techniques. In this paper, we propose a simple yet effective method called Adaptive Centered Representations (ACR) for zero-shot batch-level AD. Our approach trains off-the-shelf deep anomaly detectors (such as deep SVDD) to adapt to a set of inter-related training data distributions in combination with batch normalization, enabling automatic zero-shot generalization for unseen AD tasks. This simple recipe, batch normalization plus meta-training, is a highly effective and versatile tool. Our theoretical results guarantee the zero-shot generalization for unseen AD tasks; our empirical results demonstrate the first zero-shot AD results for tabular data and outperform existing methods in zero-shot anomaly detection and segmentation on image data from specialized domains. Code is at https://github.com/aodongli/zero-shot-ad-via-batch-norm

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Aodong Li (10 papers)
  2. Chen Qiu (43 papers)
  3. Marius Kloft (65 papers)
  4. Padhraic Smyth (52 papers)
  5. Maja Rudolph (25 papers)
  6. Stephan Mandt (100 papers)