Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Photonic reservoir computing enabled by stimulated Brillouin scattering (2302.07698v2)

Published 15 Feb 2023 in physics.optics and cs.LG

Abstract: AI drives the creation of future technologies that disrupt the way humans live and work, creating new solutions that change the way we approach tasks and activities, but it requires a lot of data processing, large amounts of data transfer, and computing speed. It has led to a growing interest of research in developing a new type of computing platform which is inspired by the architecture of the brain specifically those that exploit the benefits offered by photonic technologies, fast, low-power, and larger bandwidth. Here, a new computing platform based on the photonic reservoir computing architecture exploiting the non-linear wave-optical dynamics of the stimulated Brillouin scattering is reported. The kernel of the new photonic reservoir computing system is constructed of an entirely passive optical system. Moreover, it is readily suited for use in conjunction with high performance optical multiplexing techniques to enable real-time artificial intelligence. Here, a methodology to optimise the operational condition of the new photonic reservoir computing is described which is found to be strongly dependent on the dynamics of the stimulated Brillouin scattering system. The new architecture described here offers a new way of realising AI-hardware which highlight the application of photonics for AI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing,” \JournalTitleOptics Express 20, 3241–3249 (2012).
  2. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” \JournalTitleScientific Reports 2, 287 (2012).
  3. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” \JournalTitleOptics Express 20, 22783–22795 (2012).
  4. S. Phang, P. D. Sewell, A. Vukovic, and T. M. Benson, “The optical reservoir computer: A new approach to a programmable integrated optics system based on an artificial neural network,” in Integrated Optics Volume 2: Characterization, devices and applications, G. Righini and M. Ferrari, eds. (Institution of Engineering and Technology, 2020).
  5. B. J. Shastri, A. N. Tait, T. F. de Lima, M. A. Nahmias, H.-T. Peng, and P. R. Prucnal, “Principles of neuromorphic photonics,” \JournalTitlearXiv preprint arXiv:1801.00016 (2017).
  6. Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” \JournalTitleScience Advances 3, e1700160 (2017).
  7. J. Zhang, S. Dai, Y. Zhao, J. Zhang, and J. Huang, “Recent progress in photonic synapses for neuromorphic systems,” \JournalTitleAdvanced Intelligent Systems 2, 1900136 (2020).
  8. J. Robertson, P. Kirkland, J. A. Alanis, M. Hejda, J. Bueno, G. Di Caterina, and A. Hurtado, “Ultrafast neuromorphic photonic image processing with a vcsel neuron,” \JournalTitleScientific Reports 12, 4874 (2022).
  9. J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. L. Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” \JournalTitleNature 589, 52–58 (2021).
  10. H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication,” \JournalTitleScience (2004).
  11. M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends,” \JournalTitleKI-Künstliche Intelligenz 26, 365–371 (2012).
  12. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” \JournalTitleNature Communications 2, 1–6 (2011).
  13. G. Van der Sande, D. Brunner, and M. C. Soriano, “Advances in photonic reservoir computing,” \JournalTitleNanophotonics 6, 561–576 (2017).
  14. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” \JournalTitleIEEE Transactions on Neural Networks 22, 1469–1481 (2011).
  15. F. Laporte, A. Katumba, J. Dambre, and P. Bienstman, “Numerical demonstration of neuromorphic computing with photonic crystal cavities,” \JournalTitleOptics Express 26, 7955–7964 (2018).
  16. S. Phang, D. Furniss, C. Mellor, G. Roelkens, A. B. Seddon, P. Bientsman, and T. M. Benson, “Neuromorphic sensing via temporal signal signature processed by photonic reservoir computer,” in Optical Biopsy XIX: Toward Real-Time Spectroscopic Imaging and Diagnosis, vol. 11636 (SPIE, 2021), p. 116360H.
  17. L. Brillouin, “Diffusion de la lumière et des rayons x par un corps transparent homogène,” \JournalTitleAnnales de Physique 9, 88–122 (1922).
  18. D. Cotter, “Stimulated brillouin scattering in monomode optical fiber,” \JournalTitleJournal of Optical Communications 4, 10–19 (1983).
  19. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated brillouin scattering in optical fibers,” \JournalTitleAdvances in Optics and Photonics 2, 1–59 (2010).
  20. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” \JournalTitleNature Photonics 13, 664–677 (2019).
  21. M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton, “A chip-integrated coherent photonic-phononic memory,” \JournalTitleNature Communications 8, 1–7 (2017).
  22. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” \JournalTitleScience 318, 1748–1750 (2007).
  23. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” \JournalTitleOptics Letters 25, 156–158 (2000).
  24. C. C. Chow and A. Bers, “Chaotic stimulated brillouin scattering in a finite-length medium,” \JournalTitlePhysical Review A 47, 5144 (1993).
  25. “Corning SMF-28 ultra optical fiber,” https://www.corning.com/optical-communications/emea/en/home/products/fiber/optical-fiber-products/smf-28-ultra.html. Accessed: 2023-02-10.
  26. A. E. Marble, K. A. Brown, and B. G. Colpitts, “Stimulated brillouin scattering modeled through a finite difference time domain approach,” in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, vol. 5579 (SPIE, 2004), pp. 404–415.
  27. G. Anufriev, D. Furniss, M. Farries, and S. Phang, “Non-spectroscopic sensing enabled by an electro-optical reservoir computer,” \JournalTitleOptical Materials Express 12, 1767–1783 (2022).
  28. I. Bauwens, K. Harkhoe, P. Bienstman, G. Verschaffelt, and G. Van der Sande, “Influence of the input signal’s phase modulation on the performance of optical delay-based reservoir computing using semiconductor lasers,” \JournalTitleOptics Express 30, 13434–13446 (2022).
  29. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” \JournalTitleIEEE Journal of Quantum Electronics 34, 2064–2079 (1998).
  30. R. Gutiérrez-Castrejón, M. Dülk, S. Fischer, and G. Guekos, “Novel scheme for optical time-division demultiplexing using a delayed interferometer,” \JournalTitleOptics Communications 192, 245–254 (2001).
  31. L. Larger, “Complexity in electro-optic delay dynamics: modelling, design and applications,” \JournalTitlePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20120464 (2013).
  32. J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information processing capacity of dynamical systems,” \JournalTitleScientific Reports 2, 1–7 (2012).
  33. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” \JournalTitleIEEE Journal of Selected Topics in Quantum Electronics 15, 103–113 (2009).
  34. F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Fully analogue photonic reservoir computer,” \JournalTitleScientific Reports 6, 22381 (2016).
Citations (6)

Summary

We haven't generated a summary for this paper yet.