Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shannon Perfect Secrecy in a Discrete Hilbert Space (2302.07671v1)

Published 15 Feb 2023 in quant-ph and cs.CR

Abstract: The One-time-pad (OTP) was mathematically proven to be perfectly secure by Shannon in 1949. We propose to extend the classical OTP from an n-bit finite field to the entire symmetric group over the finite field. Within this context the symmetric group can be represented by a discrete Hilbert sphere (DHS) over an n-bit computational basis. Unlike the continuous Hilbert space defined over a complex field in quantum computing, a DHS is defined over the finite field GF(2). Within this DHS, the entire symmetric group can be completely described by the complete set of n-bit binary permutation matrices. Encoding of a plaintext can be done by randomly selecting a permutation matrix from the symmetric group to multiply with the computational basis vector associated with the state corresponding to the data to be encoded. Then, the resulting vector is converted to an output state as the ciphertext. The decoding is the same procedure but with the transpose of the pre-shared permutation matrix. We demonstrate that under this extension, the 1-to-1 mapping in the classical OTP is equally likely decoupled in Discrete Hilbert Space. The uncertainty relationship between permutation matrices protects the selected pad, consisting of M permutation matrices (also called Quantum permutation pad, or QPP). QPP not only maintains the perfect secrecy feature of the classical formulation but is also reusable without invalidating the perfect secrecy property. The extended Shannon perfect secrecy is then stated such that the ciphertext C gives absolutely no information about the plaintext P and the pad.

Citations (21)

Summary

We haven't generated a summary for this paper yet.