Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Safety under Stochastic Uncertainty with Discrete-Time Control Barrier Functions (2302.07469v2)

Published 15 Feb 2023 in eess.SY and cs.SY

Abstract: Robots deployed in unstructured, real-world environments operate under considerable uncertainty due to imperfect state estimates, model error, and disturbances. Given this real-world context, the goal of this paper is to develop controllers that are provably safe under uncertainties. To this end, we leverage Control Barrier Functions (CBFs) which guarantee that a robot remains in a ``safe set'' during its operation -- yet CBFs (and their associated guarantees) are traditionally studied in the context of continuous-time, deterministic systems with bounded uncertainties. In this work, we study the safety properties of discrete-time CBFs (DTCBFs) for systems with discrete-time dynamics and unbounded stochastic disturbances. Using tools from martingale theory, we develop probabilistic bounds for the safety (over a finite time horizon) of systems whose dynamics satisfy the discrete-time barrier function condition in expectation, and analyze the effect of Jensen's inequality on DTCBF-based controllers. Finally, we present several examples of our method synthesizing safe control inputs for systems subject to significant process noise, including an inverted pendulum, a double integrator, and a quadruped locomoting on a narrow path.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ryan K. Cosner (18 papers)
  2. Preston Culbertson (17 papers)
  3. Andrew J. Taylor (22 papers)
  4. Aaron D. Ames (201 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.