2000 character limit reached
The Kelley--Meka bounds for sets free of three-term arithmetic progressions (2302.07211v3)
Published 14 Feb 2023 in math.NT and math.CO
Abstract: We give a self-contained exposition of the recent remarkable result of Kelley and Meka: if $A\subseteq {1,\ldots,N}$ has no non-trivial three-term arithmetic progressions then $\lvert A\rvert \leq \exp(-c(\log N){1/12})N$ for some constant $c>0$. Although our proof is identical to that of Kelley and Meka in all of the main ideas, we also incorporate some minor simplifications relating to Bohr sets. This eases some of the technical difficulties tackled by Kelley and Meka and widens the scope of their method. As a consequence, we improve the lower bounds for finding long arithmetic progressions in $A+A+A$, where $A\subseteq {1,\ldots,N}$.