Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Summarization Data to Help Text Simplification (2302.07124v1)

Published 14 Feb 2023 in cs.CL and cs.AI

Abstract: One of the major problems with text simplification is the lack of high-quality data. The sources of simplification datasets are limited to Wikipedia and Newsela, restricting further development of this field. In this paper, we analyzed the similarity between text summarization and text simplification and exploited summarization data to help simplify. First, we proposed an alignment algorithm to extract sentence pairs from summarization datasets. Then, we designed four attributes to characterize the degree of simplification and proposed a method to filter suitable pairs. We named these pairs Sum4Simp (S4S). Next, we conducted human evaluations to show that S4S is high-quality and compared it with a real simplification dataset. Finally, we conducted experiments to illustrate that the S4S can improve the performance of several mainstream simplification models, especially in low-resource scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Renliang Sun (17 papers)
  2. Zhixian Yang (4 papers)
  3. Xiaojun Wan (99 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.