Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perfect divisibility and coloring of some fork-free graphs (2302.06800v2)

Published 14 Feb 2023 in math.CO and cs.DM

Abstract: A $hole$ is an induced cycle of length at least four, and an odd hole is a hole of odd length. A {\em fork} is a graph obtained from $K_{1,3}$ by subdividing an edge once. An {\em odd balloon} is a graph obtained from an odd hole by identifying respectively two consecutive vertices with two leaves of $K_{1, 3}$. A {\em gem} is a graph that consists of a $P_4$ plus a vertex adjacent to all vertices of the $P_4$. A {\em butterfly} is a graph obtained from two traingles by sharing exactly one vertex. A graph $G$ is perfectly divisible if for each induced subgraph $H$ of $G$, $V(H)$ can be partitioned into $A$ and $B$ such that $H[A]$ is perfect and $\omega(H[B])<\omega(H)$. In this paper, we show that (odd balloon, fork)-free graphs are perfectly divisible (this generalizes some results of Karthick {\em et al}). As an application, we show that $\chi(G)\le\binom{\omega(G)+1}{2}$ if $G$ is (fork, gem)-free or (fork, butterfly)-free.

Citations (2)

Summary

We haven't generated a summary for this paper yet.