Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement Entropy in Ground States of Long-Range Fermionic Systems (2302.06743v2)

Published 13 Feb 2023 in cond-mat.str-el, hep-th, and quant-ph

Abstract: We study the scaling of ground state entanglement entropy of various free fermionic models on one dimensional lattices, where the hopping and pairing terms decay as a power law. We seek to understand the scaling of entanglement entropy in generic models as the exponent of the power law $\alpha$ is varied. We ask if there exists a common $\alpha_{c}$ across different systems governing the transition to area law scaling found in local systems. We explore several examples numerically and argue that when applicable, the scaling of entanglement entropy in long-range models is constrained by predictions from the low-energy theory. In contrast, disordered models and models without a continuum limit show fractal scaling of entanglement approaching volume-law behavior as $\alpha$ approaches zero. These general features are expected to persist on turning on interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  2. D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
  3. A. Kitaev and J. Preskill, Topological entanglement entropy, Physical Review Letters 96, 10.1103/physrevlett.96.110404 (2006).
  4. M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy (Springer International Publishing, 2017).
  5. T. Koffel, M. Lewenstein, and L. Tagliacozzo, Entanglement entropy for the long-range ising chain in a transverse field, Physical Review Letters 109, 10.1103/physrevlett.109.267203 (2012).
  6. N. Chai, A. Dymarsky, and M. Smolkin, Model of persistent breaking of discrete symmetry, Physical Review Letters 128, 10.1103/physrevlett.128.011601 (2022).
  7. W. Li and T. Takayanagi, Holography and entanglement in flat spacetime, Physical Review Letters 106, 10.1103/physrevlett.106.141301 (2011).
  8. T. Kuwahara and K. Saito, Area law of noncritical ground states in 1d long-range interacting systems, Nature Communications 11, 10.1038/s41467-020-18055-x (2020).
  9. M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024 (2007).
  10. G. Vitagliano, A. Riera, and J. I. Latorre, Volume-law scaling for the entanglement entropy in spin-1/2 chains, New Journal of Physics 12, 113049 (2010).
  11. I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
  12. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical 42, 504005 (2009).
  13. B.-Q. Jin and V. E. Korepin, Quantum spin chain, toeplitz determinants and the fisher–hartwig conjecture, Journal of Statistical Physics 116, 79 (2004).
  14. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Physical Review Letters 96, 10.1103/physrevlett.96.100503 (2006).
  15. B. Swingle, Entanglement entropy and the fermi surface, Physical Review Letters 105, 10.1103/physrevlett.105.050502 (2010).
  16. C. Liu, X. Chen, and L. Balents, Quantum entanglement of the sachdev-ye-kitaev models, Physical Review B 97, 10.1103/physrevb.97.245126 (2018).
  17. M. Fannes, B. Haegeman, and M. Mosonyi, Entropy growth of shift-invariant states on a quantum spin chain, Journal of Mathematical Physics 44, 6005 (2003).
  18. S. Farkas and Z. Zimborá s, On the sharpness of the zero-entropy-density conjecture, Journal of Mathematical Physics 46, 123301 (2005).
  19. P. Łydż ba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic hamiltonians, Physical Review Letters 125, 10.1103/physrevlett.125.180604 (2020).
  20. R. Modak and T. Nag, Many-body dynamics in long-range hopping models in the presence of correlated and uncorrelated disorder, Phys. Rev. Res. 2, 012074 (2020).
  21. R. Juhász, Testing the validity of random-singlet state for long-range hopping models through the scaling of entanglement entropy, Phys. Rev. B 105, 014206 (2022).
  22. A. D. Mirlin and F. Evers, Multifractality and critical fluctuations at the anderson transition, Phys. Rev. B 62, 7920 (2000).
  23. S. Sachdev, Quantum phase transitions, Physics World 12, 33 (1999).
  24. G. Vidal, Entanglement renormalization, Physical Review Letters 99, 10.1103/physrevlett.99.220405 (2007).
  25. H. Casini and M. Huerta, A c-theorem for entanglement entropy, Journal of Physics A: Mathematical and Theoretical 40, 7031 (2007).
  26. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, Journal of High Energy Physics 2013, 10.1007/jhep04(2013)162 (2013).
  27. B. Swingle and T. Senthil, Universal crossovers between entanglement entropy and thermal entropy, Physical Review B 87, 10.1103/physrevb.87.045123 (2013).
  28. S. N. Solodukhin, Entanglement entropy of black holes, Living Reviews in Relativity 14, 10.12942/lrr-2011-8 (2011).
  29. N. Shiba and T. Takayanagi, Volume law for the entanglement entropy in non-local QFTs, Journal of High Energy Physics 2014, 10.1007/jhep02(2014)033 (2014).
  30. G. Refael and J. E. Moore, Entanglement entropy of random quantum critical points in one dimension, Physical Review Letters 93, 10.1103/physrevlett.93.260602 (2004).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com