Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions (2302.06529v3)

Published 13 Feb 2023 in cs.LG

Abstract: Over the course of the past two decades, a substantial body of research has substantiated the viability of utilising cardiac signals as a biometric modality. This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals. A convolutional neural network (CNN) is employed to classify users based on electrocardiomatrices, a specific type of image derived from ECG signals. The proposed identification system is evaluated in multiple databases, achieving up to 99.84\% accuracy on healthy subjects, 97.09\% on patients with cardiovascular diseases, and 97.89% on mixed populations including both healthy and arrhythmic patients. The system also performs robustly under varying activity conditions, achieving 91.32% accuracy in scenarios involving different physical activities. These consistent and reliable results, with low error rates such as a FAR of 0.01% and FRR of 0.157% in the best cases, demonstrate the method's significant advancement in subject identification within healthcare systems. By considering patients' cardiovascular conditions and activity levels, the proposed approach addresses gaps in the existing literature, positioning it as a strong candidate for practical applications in real-world healthcare settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. A. L. Alkhaqani, “Patient identification errors in the hospital setting: A prospective observational study,” Al-Rafidain Journal of Medical Sciences (ISSN: 2789-3219), vol. 4, pp. 1–5, 2023.
  2. D. Nigam, S. N. Patel, P. Raj Vincent, K. Srinivasan, and S. Arunmozhi, “Biometric authentication for intelligent and privacy-preserving healthcare systems,” Journal of Healthcare Engineering, vol. 2022, 2022.
  3. A. Aguilar, W. Van Der Putten, and F. Kirrane, “Positive patient identification using rfid and wireless networks,” in HISI 11th Annual Conference and Scientific Symposium.   Citeseer, 2006.
  4. A. B. McCoy, A. Wright, M. G. Kahn, J. S. Shapiro, E. V. Bernstam, and D. F. Sittig, “Matching identifiers in electronic health records: implications for duplicate records and patient safety,” BMJ quality & safety, vol. 22, no. 3, pp. 219–224, 2013.
  5. L. Riplinger, J. Piera-Jiménez, and J. P. Dooling, “Patient identification techniques–approaches, implications, and findings,” Yearbook of medical informatics, vol. 29, no. 01, pp. 081–086, 2020.
  6. E. I. P. D. Dive, “Patient identification: Executive summary,” ECRI Institute, 2016. [Online]. Available: https://www.ecri.org/Resources/Whitepapers_and_reports/PSO%20Deep%20Dives/Deep%20Dive_PT_ID_2016_exec%20summary.pdf
  7. A. Krzepicki, “New perspectives on the patient id problem in healthcare,” Patient Now, November 2022. [Online]. Available: http://patientidnow.org/wp-content/uploads/2022/11/PIDN-Research-Findings-Final.pdf
  8. G. Lippi, C. Mattiuzzi, C. Bovo, and E. J. Favaloro, “Managing the patient identification crisis in healthcare and laboratory medicine,” Clinical biochemistry, vol. 50, no. 10-11, pp. 562–567, 2017.
  9. J. J. Hathaliya, S. Tanwar, and R. Evans, “Securing electronic healthcare records: A mobile-based biometric authentication approach,” Journal of Information Security and Applications, vol. 53, p. 102528, 2020.
  10. M. Miller, “The mounting death toll of hospital cyberattacks,” Politico, 2022. [Online]. Available: https://www.politico.com/news/2022/12/28/cyberattacks-u-s-hospitals-00075638
  11. P. Institute, “Cyber insecurity in healthcare: The cost and impact on patient safety and care,” ProofPoint, 2022. [Online]. Available: https://www.proofpoint.com/sites/default/files/threat-reports/pfpt-us-tr-cyber-insecurity-healthcare-ponemon-report.pdf
  12. M. P. Hemesath, H. B. d. Santos, E. M. S. Torelly, A. d. S. Barbosa, and A. M. M. d. Magalhães, “Educational strategies to improve adherence to patient identification,” Revista Gaúcha de Enfermagem, vol. 36, pp. 43–48, 2015.
  13. T. H. Tase and D. M. R. Tronchin, “Patient identification systems in obstetric units, and wristband conformity,” Acta Paulista de Enfermagem, vol. 28, pp. 374–380, 2015.
  14. S. Renner, P. Howanitz, and P. Bachner, “Wristband identification error reporting in 712 hospitals. a college of american pathologists’ q-probes study of quality issues in transfusion practice.” Archives of pathology & laboratory medicine, vol. 117, no. 6, pp. 573–577, 1993.
  15. H. A. De Rezende, M. M. Melleiro, and G. T. Shimoda, “Interventions to reduce patient identification errors in the hospital setting: a systematic review protocol,” JBI Evidence Synthesis, vol. 17, no. 1, pp. 37–42, 2019.
  16. N. K. Jaafa, B. Mokaya, S. M. Savai, A. Yeung, A. M. Siika, and M. Were, “Implementation of fingerprint technology for unique patient matching and identification at an hiv care and treatment facility in western kenya: Cross-sectional study,” Journal of medical Internet research, vol. 23, no. 12, p. e28958, 2021.
  17. B. Jeon, B. Jeong, S. Jee, Y. Huang, Y. Kim, G. H. Park, J. Kim, M. Wufuer, X. Jin, S. W. Kim et al., “A facial recognition mobile app for patient safety and biometric identification: Design, development, and validation,” JMIR mHealth and uHealth, vol. 7, no. 4, p. e11472, 2019.
  18. F. Khatun, R. Distler, M. Rahman, B. O’Donnell, N. Gachuhi, M. Alwani, Y. Wang, A. Rahman, J. F. Frøen, and I. K. Friberg, “Comparison of a palm-based biometric solution with a name-based identification system in rural bangladesh,” Global health action, vol. 15, no. 1, p. 2045769, 2022.
  19. M. Sawa, T. Inoue, and S. Manabe, “Biometric palm vein authentication of psychiatric patients for reducing in-hospital medication errors: a pre–post observational study,” BMJ open, vol. 12, no. 4, p. e055107, 2022.
  20. A. Ostad-Sharif, D. Abbasinezhad-Mood, and M. Nikooghadam, “A robust and efficient ecc-based mutual authentication and session key generation scheme for healthcare applications,” Journal of medical systems, vol. 43, no. 1, pp. 1–22, 2019.
  21. N. Anne, M. D. Dunbar, F. Abuna, P. Simpson, P. Macharia, B. Betz, P. Cherutich, D. Bukusi, and F. Carey, “Feasibility and acceptability of an iris biometric system for unique patient identification in routine hiv services in kenya,” International journal of medical informatics, vol. 133, p. 104006, 2020.
  22. H. Do, V. Truong, K. George, and B. Shirke, “Eeg-based biometrics utilizing image recognition for patient identification,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON).   IEEE, 2019, pp. 0591–0595.
  23. A. Z. Zahid, I. H. Mohammed Salih Al-Kharsan, H. A. Bakarman, M. F. Ghazi, H. A. Salman, and F. N. Hasoon, “Biometric authentication security system using human dna,” in 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), 2019, pp. 1–7.
  24. I. J. Jacob, P. Betty, P. E. Darney, S. Raja, Y. H. Robinson, and E. G. Julie, “Biometric template security using dna codec based transformation,” Multimedia Tools and Applications, vol. 80, pp. 7547–7566, 2021.
  25. B. A. Aubert and G. Hamel, “Adoption of smart cards in the medical sector:: the canadian experience,” Social Science & Medicine, vol. 53, no. 7, pp. 879–894, 2001.
  26. J. W. Sohn, H. Kim, S. B. Park, S. Lee, J. I. Monroe, T. B. Malone, T. Kinsella, M. Yao, C. Kunos, S. S. Lo et al., “Clinical study of using biometrics to identify patient and procedure,” Frontiers in Oncology, vol. 10, p. 586232, 2020.
  27. D. M. L. Storisteanu, T. L. Norman, A. Grigore, and T. L. Norman, “Biometric fingerprint system to enable rapid and accurate identification of beneficiaries,” Global Health: Science and Practice, vol. 3, no. 1, pp. 135–137, 2015.
  28. S. Batool, H. Tariq, M. Shahid, S. Siddiqui, S. Batool, and S. Aman, “Causes of adermatoglyphia: A hurdle to biometric authentication,” Journal of Pakistan Association of Dermatologists, vol. 32, no. 1, pp. 42–46, 2022. [Online]. Available: https://jpad.com.pk/index.php/jpad/article/view/1805
  29. Z. Deneken-Hernandez, M. Cherem-Kibrit, L. Gutiérrez-Andrade, G. Rodríguez-Gutiérrez, and J. O. Colmenero-Mercado, “Capecitabine induced fingerprint loss: Case report and review of the literature,” Journal of Oncology Pharmacy Practice, vol. 28, no. 2, pp. 495–499, 2022.
  30. S. Arya, N. Pratap, and K. Bhatia, “Future of face recognition: a review,” Procedia Computer Science, vol. 58, pp. 578–585, 2015.
  31. K. Mahadevappa, A. Vora, A. Graham, and S. Nesathurai, “Facial paralysis: a critical review of accepted explanation,” Medical hypotheses, vol. 74, no. 3, pp. 508–509, 2010.
  32. C. Fuster-Barceló, P. Peris-Lopez, and C. Camara, “Elektra: Elektrokardiomatrix application to biometric identification with convolutional neural networks,” Neurocomputing (In Press)., 2022.
  33. D. Li, F. Tian, S. Rengifo, G. Xu, M. M. Wang, and J. Borjigin, “Electrocardiomatrix: A new method for beat-by-beat visualization and inspection of cardiac signals,” J Integr Cardiol, vol. 1, no. 5, pp. 124–128, 2015.
  34. G. Xu, S. Dodaballapur, T. Mihaylova, and J. Borjigin, “Electrocardiomatrix facilitates qualitative identification of diminished heart rate variability in critically ill patients shortly before cardiac arrest,” Journal of Electrocardiology, vol. 51, no. 6, pp. 955–961, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022073618303480
  35. D. L. Brown, G. Xu, A. M. B. Krzyske, N. C. Buhay, M. Blaha, M. M. Wang, P. Farrehi, and J. Borjigin, “Electrocardiomatrix facilitates accurate detection of atrial fibrillation in stroke patients,” Stroke, vol. 50, no. 7, pp. 1676–1681, 2019. [Online]. Available: https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.119.025361
  36. R. Salinas-Martínez, J. De Bie, N. Marzocchi, and F. Sandberg, “Automatic detection of atrial fibrillation using electrocardiomatrix and convolutional neural network,” in 2020 Computing in Cardiology, 2020, pp. 1–4.
  37. R. Salinas-Martínez, J. De Bie, N. Marzocchi, and F. Sandberg, “Detection of brief episodes of atrial fibrillation based on electrocardiomatrix and convolutional neural network,” Frontiers in physiology, vol. 12, 2021.
  38. A. Goldberg, “Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. circulation [online]. 101 (23), pp. e215–e220,” Aug 1999.
  39. G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001.
  40. R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der ekg-signaldatenbank cardiodat der ptb über das internet,” Biomedizinische Technik / Biomedical Engineering, vol. 40, pp. 317–318, 1 1995.
  41. L. Howell and B. Porr, “High precision ecg database with annotated r peaks, recorded and filmed under realistic conditions,” 2018.
  42. T.-W. Shen, W. Tompkins, and Y. Hu, “One-lead ecg for identity verification,” in Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society][Engineering in Medicine and Biology, vol. 1.   IEEE, 2002, pp. 62–63.
  43. I. Monedero, “A novel ecg diagnostic system for the detection of 13 different diseases,” Engineering Applications of Artificial Intelligence, vol. 107, p. 104536, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197621003845
  44. E. D. Übeyli, “Support vector machines for detection of electrocardiographic changes in partial epileptic patients,” Engineering Applications of Artificial Intelligence, vol. 21, no. 8, pp. 1196–1203, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197608000420
  45. V. Lee, G. Xu, V. Liu, P. Farrehi, and J. Borjigin, “Accurate detection of atrial fibrillation and atrial flutter using the electrocardiomatrix technique,” Journal of Electrocardiology, vol. 51, no. 6, Supplement, pp. S121–S125, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022073618303406
  46. K. Sharma, M. Rao, P. Marwaha, and A. Kumar, “Accurate detection of congestive heart failure using electrocardiomatrix technique,” Multimedia Tools and Applications, 04 2022.
  47. D. L. Brown, G. Xu, A. M. B. Krzyske, N. C. Buhay, M. Blaha, M. M. Wang, P. Farrehi, and J. Borjigin, “Electrocardiomatrix facilitates accurate detection of atrial fibrillation in stroke patients,” Stroke, vol. 50, no. 7, pp. 1676–1681, 2019.
  48. Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ecg arrhythmia classification,” Expert Systems with Applications: X, vol. 7, p. 100033, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590188520300123
  49. O. Noran and P. Bernus, “Towards an evaluation framework for ubiquitous, self-evolving patient identification solutions in health information systems,” Procedia Computer Science, vol. 196, pp. 550–560, 2022.
  50. B.-H. Kim and J.-Y. Pyun, “Ecg identification for personal authentication using lstm-based deep recurrent neural networks,” Sensors, vol. 20, no. 11, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/11/3069
  51. K. J. Chee and D. A. Ramli, “Electrocardiogram biometrics using transformer’s self-attention mechanism for sequence pair feature extractor and flexible enrollment scope identification,” Sensors, vol. 22, no. 9, p. 3446, 2022.
  52. I. El Boujnouni, H. Zili, A. Tali, T. Tali, and Y. Laaziz, “A wavelet-based capsule neural network for ecg biometric identification,” Biomedical Signal Processing and Control, vol. 76, p. 103692, 2022.
  53. J. Liu, L. Yin, C. He, B. Wen, X. Hong, and Y. Li, “A multiscale autoregressive model-based electrocardiogram identification method,” IEEE Access, vol. 6, pp. 18 251–18 263, 2018.
  54. J. R. Pinto and J. S. Cardoso, “An end-to-end convolutional neural network for ecg-based biometric authentication,” in 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2019, pp. 1–8.
  55. R. Donida Labati, E. Muñoz, V. Piuri, R. Sassi, and F. Scotti, “Deep-ecg: Convolutional neural networks for ecg biometric recognition,” Pattern Recognition Letters, vol. 126, pp. 78–85, 2019, robustness, Security and Regulation Aspects in Current Biometric Systems. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167865518301077
  56. Y. Chu, H. Shen, and K. Huang, “Ecg authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss,” IEEE Access, vol. 7, pp. 51 598–51 607, 2019.
  57. P.-L. Hong, J.-Y. Hsiao, C.-H. Chung, Y.-M. Feng, and S.-C. Wu, “Ecg biometric recognition: Template-free approaches based on deep learning,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 2633–2636.
  58. Y. Li, Y. Pang, K. Wang, and X. Li, “Toward improving ecg biometric identification using cascaded convolutional neural networks,” Neurocomputing, vol. 391, pp. 83–95, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231220300485
Citations (1)

Summary

We haven't generated a summary for this paper yet.