Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure-Preserving Model Reduction for Port-Hamiltonian Systems Based on a Special Class of Nonlinear Approximation Ansatzes (2302.06479v2)

Published 13 Feb 2023 in math.NA, cs.NA, and math.OC

Abstract: We discuss structure-preserving model order reduction for port-Hamiltonian systems based on an approximation of the full-order state by a linear combination of ansatz functions which depend themselves on the state of the reduced-order model. In recent years, such nonlinear approximation ansatzes have gained more and more attention especially due to their effectiveness in the context of model reduction for transport-dominated systems which are challenging for classical linear model reduction techniques. We demonstrate that port-Hamiltonian reduced-order models can often be obtained by a residual minimization approach where a special weighted norm is used for the residual. Moreover, we discuss sufficient conditions for the resulting reduced-order models to be stable. Finally, the methodology is illustrated by means of two transport-dominated numerical test cases, where the ansatz functions are determined based on snapshot data of the full-order state.

Citations (2)

Summary

We haven't generated a summary for this paper yet.