Papers
Topics
Authors
Recent
Search
2000 character limit reached

Outlier-Based Domain of Applicability Identification for Materials Property Prediction Models

Published 17 Jan 2023 in cond-mat.mtrl-sci and cs.LG | (2302.06454v1)

Abstract: Machine learning models have been widely applied for material property prediction. However, practical application of these models can be hindered by a lack of information about how well they will perform on previously unseen types of materials. Because machine learning model predictions depend on the quality of the available training data, different domains of the material feature space are predicted with different accuracy levels by such models. The ability to identify such domains enables the ability to find the confidence level of each prediction, to determine when and how the model should be employed depending on the prediction accuracy requirements of different tasks, and to improve the model for domains with high errors. In this work, we propose a method to find domains of applicability using a large feature space and also introduce analysis techniques to gain more insight into the detected domains and subdomains.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.