Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On unimodular module categories (2302.06192v2)

Published 13 Feb 2023 in math.QA, math.CT, and math.RT

Abstract: Let $\mathcal{C}$ be a finite tensor category and $\mathcal{M}$ an exact left $\mathcal{C}$-module category. We call $\mathcal{M}$ unimodular if the finite multitensor category ${\sf Rex}_{\mathcal{C}}(\mathcal{M})$ of right exact $\mathcal{C}$-module endofunctors of $\mathcal{M}$ is unimodular. In this article, we provide various characterizations, properties, and examples of unimodular module categories. As our first application, we employ unimodular module categories to construct (commutative) Frobenius algebra objects in the Drinfeld center of any finite tensor category. When $\mathcal{C}$ is a pivotal category, and $\mathcal{M}$ is a unimodular, pivotal left $\mathcal{C}$-module category, the Frobenius algebra objects are symmetric as well. Our second application is a classification of unimodular module categories over the category of finite dimensional representations of a finite dimensional Hopf algebra; this answers a question of Shimizu. Using this, we provide an example of a finite tensor category whose categorical Morita equivalence class does not contain any unimodular tensor category.

Citations (2)

Summary

We haven't generated a summary for this paper yet.