Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and decays of solutions for fractional Schrödinger equations with decaying potentials (2302.05848v1)

Published 12 Feb 2023 in math.AP

Abstract: We revisit the following fractional Schr\"{o}dinger equation \begin{align}\label{1a} \varepsilon{2s}(-\Delta)su +Vu=u{p-1},\,\,\,u>0,\ \ \ \mathrm{in}\ \RN, \end{align} where $\varepsilon>0$ is a small parameter, $(-\Delta)s$ denotes the fractional Laplacian, $s\in(0,1)$, $p\in (2, 2_s*)$, $2_s*=\frac {2N}{N-2s}$, $N>2s$, $V\in C\big(\RN, [0, +\infty)\big)$ is a potential. Under various decay assumptions on $V$, we introduce a uniform penalization argument combined with a comparison principle and iteration process to detect an explicit threshold value $p_$, such that the above problem admits positive concentration solutions if $p\in (p_, \,2_s*)$, while it has no positive weak solutions for $p\in (2,\,p_)$ if $p_>2$, where the threshold $p_\in [2, 2^s)$ can be characterized explicitly by \begin{equation*}\label{qdj111} p=\left{\begin{array}{l} 2+\frac {2s}{N-2s} \ \ \ \text { if } \lim\limits_{|x| \to \infty} (1+|x|{2s})V(x)=0,\vspace{1mm} 2+\frac {\omega}{N+2s-\omega} \text { if } 0<\inf (1+|x|\omega)V(x)\le \sup (1+|x|\omega)V(x)< \infty \text { for some } \omega \in [0, 2s],\vspace{1mm} 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text { if } \inf V(x)\log(e+|x|2)>0. \end{array}\right. \end{equation} Moreover, corresponding to the various decay assumptions of $V(x)$, we obtain the decay properties of the solutions at infinity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.