Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maneuver Decision-Making For Autonomous Air Combat Through Curriculum Learning And Reinforcement Learning With Sparse Rewards (2302.05838v1)

Published 12 Feb 2023 in cs.AI and cs.LG

Abstract: Reinforcement learning is an effective way to solve the decision-making problems. It is a meaningful and valuable direction to investigate autonomous air combat maneuver decision-making method based on reinforcement learning. However, when using reinforcement learning to solve the decision-making problems with sparse rewards, such as air combat maneuver decision-making, it costs too much time for training and the performance of the trained agent may not be satisfactory. In order to solve these problems, the method based on curriculum learning is proposed. First, three curricula of air combat maneuver decision-making are designed: angle curriculum, distance curriculum and hybrid curriculum. These courses are used to train air combat agents respectively, and compared with the original method without any curriculum. The training results show that angle curriculum can increase the speed and stability of training, and improve the performance of the agent; distance curriculum can increase the speed and stability of agent training; hybrid curriculum has a negative impact on training, because it makes the agent get stuck at local optimum. The simulation results show that after training, the agent can handle the situations where targets come from different directions, and the maneuver decision results are consistent with the characteristics of missile.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yu-Jie Wei (2 papers)
  2. Hong-Peng Zhang (1 paper)
  3. Chang-Qiang Huang (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.