Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform stabilization for the semi-linear wave equation with nonlinear Kelvin-Voigt damping (2302.05667v1)

Published 11 Feb 2023 in math.AP and math.OC

Abstract: This paper is concerned with the decay estimate of solutions to the semilinear wave equation subject to two localized dampings in a bounded domain. The first one is of the nonlinear Kelvin-Voigt type and is distributed around a neighborhood of the boundary according to the Geometric Control Condition. While the second one is a frictional damping and we consider it hurting the geometric condition of control. We show uniform decay rate results of the corresponding energy for all initial data taken in bounded sets of finite energy phase-space. The proof is based on obtaining an observability inequality which combines unique continuation properties and the tools of the Microlocal Analysis Theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.