Compositional Algorithms on Compositional Data: Deciding Sheaves on Presheaves (2302.05575v3)
Abstract: Algorithmicists are well-aware that fast dynamic programming algorithms are very often the correct choice when computing on compositional (or even recursive) graphs. Here we initiate the study of how to generalize this folklore intuition to mathematical structures writ large. We achieve this horizontal generality by adopting a categorial perspective which allows us to show that: (1) structured decompositions (a recent, abstract generalization of many graph decompositions) define Grothendieck topologies on categories of data (adhesive categories) and that (2) any computational problem which can be represented as a sheaf with respect to these topologies can be decided in linear time on classes of inputs which admit decompositions of bounded width and whose decomposition shapes have bounded feedback vertex number. This immediately leads to algorithms on objects of any C-set category; these include -- to name but a few examples -- structures such as: symmetric graphs, directed graphs, directed multigraphs, hypergraphs, directed hypergraphs, databases, simplicial complexes, circular port graphs and half-edge graphs. Thus we initiate the bridging of tools from sheaf theory, structural graph theory and parameterized complexity theory; we believe this to be a very fruitful approach for a general, algebraic theory of dynamic programming algorithms. Finally we pair our theoretical results with concrete implementations of our main algorithmic contribution in the AlgebraicJulia ecosystem.
- Abramsky S, Shah N. Relating structure and power: Comonadic semantics for computational resources. Journal of Logic and Computation, 2021. 31(6):1390--1428. URL https://doi.org/10.1093/logcom/exab048.
- Diestel R. Graph Decompositions: a study in infinite graph theory. Oxford University Press, 1990.
- Diestel R. Graph theory. Springer, 2010. ISBN:9783642142789.
- Robertson N, Seymour PD. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, 1986. 7(3):309--322. 10.1016/0196-6774(86)90023-4.
- Robertson N, Seymour PD. Graph minors X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B, 1991. 52(2):153--190. https://doi.org/10.1016/0095-8956(91)90061-N.
- Bertelè U, Brioschi F. Nonserial dynamic programming. Academic Press, Inc., 1972. https://doi.org/10.1016/s0076-5392(08)x6010-2. ISBN:9780124109827.
- Halin R. S-functions for graphs. Journal of Geometry, 1976. 8(1-2):171--186. 10.1007/BF01917434.
- i Oum S. Graphs of Bounded Rank-width. Ph.D. thesis, Princeton University, 2005. URL https://mathsci.kaist.ac.kr/~sangil/pdf/thesis.pdf.
- The Grid Theorem for vertex-minors. Journal of Combinatorial Theory, Series B, 2020. URL https://doi.org/10.1016/j.jctb.2020.08.004.
- Robertson N, Seymour P. Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 2004. 92(2):325 -- 357. https://doi.org/10.1016/j.jctb.2004.08.001.
- Wollan P. The structure of graphs not admitting a fixed immersion. Journal of Combinatorial Theory, Series B, 2015. 110:47--66. URL https://doi.org/10.1016/j.jctb.2014.07.003.
- Directed tree-width. Journal of combinatorial theory. Series B, 2001. 82(1):138--154. URL https://doi.org/10.1006/jctb.2000.2031.
- The DAG-width of directed graphs. Journal of Combinatorial Theory, Series B, 2012. 102(4):900--923. https://doi.org/10.1016/j.jctb.2012.04.004.
- Hunter P, Kreutzer S. Digraph Measures: Kelly Decompositions‚ Games‚ and Orderings. Theoretical Computer Science (TCS), 2008. 399. https://doi.org/10.1016/j.tcs.2008.02.038.
- Safari MA. D-width: A more natural measure for directed tree width. In: International Symposium on Mathematical Foundations of Computer Science. Springer, 2005 pp. 745--756. https://doi.org/10.1007/11549345_64.
- Kreutzer S, Kwon Oj. Digraphs of Bounded Width. In: Classes of Directed Graphs, pp. 405--466. Springer, 2018. https://doi.org/10.1007/978-3-319-71840-8_9.
- Directed branch-width: A directed analogue of tree-width. arXiv preprint arXiv:2009.08903, 2020. URL https://doi.org/10.48550/arXiv.2009.08903.
- Carmesin J. Local 2-separators. Journal of Combinatorial Theory, Series B, 2022. 156:101--144. https://doi.org/10.1016/j.jctb.2022.04.005.
- Layered separators in minor-closed graph classes with applications. Journal of Combinatorial Theory, Series B, 2017. 127:111--147. URL https://doi.org/10.1016/j.jctb.2017.05.006.
- Shahrokhi F. New representation results for planar graphs. arXiv preprint arXiv:1502.06175, 2015. URL https://doi.org/10.48550/arXiv.1502.06175.
- Vertex Deletion Parameterized by Elimination Distance and Even Less. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021. Association for Computing Machinery, New York, NY, USA. ISBN 9781450380539, 2021 p. 1757–1769. 10.1145/3406325.3451068. URL https://doi.org/10.1145/3406325.3451068.
- Grohe M. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, Cambridge University Press, Cambridge, 2017, x + 544 pp. The Bulletin of Symbolic Logic, 2017. 23(4):493--494. ISBN:1079-8986.
- Courcelle B, Engelfriet J. Graph structure and monadic second-order logic: a language-theoretic approach, volume 138. Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511977619.
- Flum J, Grohe M. Parameterized Complexity Theory. 2006. Texts Theoret. Comput. Sci. EATCS Ser, 2006. https://doi.org/10.1007/3-540-29953-X. ISBN:978-3-540-29952-3.
- Parameterized algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3. ISBN:978-3-319-21275-3.
- Downey RG, Fellows MR. Fundamentals of parameterized complexity, volume 4. Springer, 2013. URL https://doi.org/10.1007/978-1-4471-5559-1.
- Leray J. Lanneau dhomologie dune reprsentation. CR Acad. Sci. Paris, 1946. 222:13661368.
- Gray JW. Fragments of the history of sheaf theory. In: Applications of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9--21, 1977. Springer, 1966 pp. 1--79. URL https://doi.org/10.1007/BFb0061812.
- Rosiak D. Sheaf Theory through Examples. The MIT Press, 2022. ISBN 9780262370424. URL 10.7551/mitpress/12581.001.0001.
- MacLane S, Moerdijk I. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media, 2012. URL https://doi.org/10.1007/978-1-4612-0927-0.
- Oum Si, Seymour PD. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B, 2006. 96(4):514--528. https://doi.org/10.1016/j.jctb.2005.10.006.
- Bumpus BM, Meeks K. Edge exploration of temporal graphs. Algorithmica, 2022. pp. 1--29. URL https://doi.org/10.1007/s00453-022-01018-7.
- Operadic modeling of dynamical systems: mathematics and computation. arXiv preprint arXiv:2105.12282, 2021. URL https://doi.org/10.48550/arXiv.2105.12282.
- Structured Decompositions: Structural and Algorithmic Compositionality. arXiv preprint arXiv:2207.06091, 2022. URL https://doi.org/10.48550/arXiv.2207.06091.
- Categorical data structures for technical computing. arXiv preprint arXiv:2106.04703, 2021.
- Lack S, Sobocinski P. Adhesive Categories. In: Walukiewicz I (ed.), Foundations of Software Science and Computation Structures. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-24727-2, 2004 pp. 273--288. https://doi.org/10.1007/978-3-540-24727-2_20.
- AlgebraicJulia/StructuredDecompositions.jl. Accessed: 2023-02-10, URL https://github.com/AlgebraicJulia/StructuredDecompositions.jl.
- Patterson E, other contributors. AlgebraicJulia/Catlab.jl: v0.10.0. 10.5281/zenodo.4394460. URL https://zenodo.org/record/4394460.
- Bodlaender HL, Fomin FV. Tree decompositions with small cost. In: Algorithm Theory—SWAT 2002: 8th Scandinavian Workshop on Algorithm Theory Turku, Finland, July 3--5, 2002 Proceedings 8. Springer, 2002 pp. 378--387.
- Riehl E. Category theory in context. Courier Dover Publications, 2017. ISBN:048680903X.
- Adhesive Categories. https://ncatlab.org/nlab/show/adhesive+category. Accessed: 2023-06-02.
- Co-Degeneracy and Co-Treewidth: Using the Complement to Solve Dense Instances. In: Bonchi F, Puglisi SJ (eds.), 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021 pp. 42:1--42:17. URL https://doi.org/10.4230/LIPIcs.MFCS.2021.42.