Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random attractors of a stochastic Hopfield neural network model with delays (2302.05504v1)

Published 10 Feb 2023 in math.DS

Abstract: The global asymptotic behavior of a stochastic Hopfield neural network model (HNNM) with delays is explored by studying the existence and structure of random attractors. It is first proved that the trajectory field of the stochastic delayed HNNM admits an almost sure continuous version, which is compact for $t>\tau$ (where $\tau$ is the delay) by a delicate construction based on the random semiflow generated by the diffusion term. Then, this version is shown to generate a random dynamical system (RDS) by piece-wise linear approximation, after which the existence of a random absorbing set is obtained by a careful uniform apriori estimate of the solutions. Subsequently, the pullback asymptotic compactness of the RDS generated by the stochastic delayed HNNM is proved and hence the existence of random attractors is obtained. Moreover, sufficient conditions under which the attractors turn out to be an exponential attracting stationary solution are given. Numerical simulations are also conducted at last to illustrate the effectiveness of the established results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.