Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal error analysis of a non-uniform IMEX-L1 finite element method for time fractional PDEs and PIDEs (2302.05188v3)

Published 10 Feb 2023 in math.NA and cs.NA

Abstract: Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Gr\"{o}nwall inequality, global almost optimal error estimates in $L2$- and $H1$-norms are derived for the problem with initial data $u_0 \in H_01(\Omega)\cap H2(\Omega)$. The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in $H1$-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an $L\infty$ error estimate is obtained for 2D problems that too with the initial condition is in $ H_01(\Omega)\cap H2(\Omega)$. All results proved in this paper are valid uniformly as $\alpha\longrightarrow 1{-}$, where $\alpha$ is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.