Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hessian Based Smoothing Splines for Manifold Learning (2302.05025v1)

Published 10 Feb 2023 in stat.ML and cs.LG

Abstract: We propose a multidimensional smoothing spline algorithm in the context of manifold learning. We generalize the bending energy penalty of thin-plate splines to a quadratic form on the Sobolev space of a flat manifold, based on the Frobenius norm of the Hessian matrix. This leads to a natural definition of smoothing splines on manifolds, which minimizes square error while optimizing a global curvature penalty. The existence and uniqueness of the solution is shown by applying the theory of reproducing kernel Hilbert spaces. The minimizer is expressed as a combination of Green's functions for the biharmonic operator, and 'linear' functions of everywhere vanishing Hessian. Furthermore, we utilize the Hessian estimation procedure from the Hessian Eigenmaps algorithm to approximate the spline loss when the true manifold is unknown. This yields a particularly simple quadratic optimization algorithm for smoothing response values without needing to fit the underlying manifold. Analysis of asymptotic error and robustness are given, as well as discussion of out-of-sample prediction methods and applications.

Summary

We haven't generated a summary for this paper yet.