Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Modeling of Surrogates to Improve Multi-source High-dimensional Biobank Studies (2302.04970v2)

Published 9 Feb 2023 in stat.ME

Abstract: Surrogate variables in electronic health records (EHR) and biobank data play an important role in biomedical studies due to the scarcity or absence of chart-reviewed gold standard labels. We develop a novel approach named SASH for {\bf S}urrogate-{\bf A}ssisted and data-{\bf S}hielding {\bf H}igh-dimensional integrative regression. It is a semi-supervised approach that efficiently leverages sizable unlabeled samples with error-prone EHR surrogate outcomes from multiple local sites, to improve the learning accuracy of the small gold-labeled data. {To facilitate stable and efficient knowledge extraction from the surrogates, our method first obtains a preliminary supervised estimator, and then uses it to assist training a regularized single index model (SIM) for the surrogates. Interestingly, through a chain of convex and properly penalized sparse regressions that approximate the SIM loss with bias-correction, our method avoids the local minima issue of the SIM training, and fully eliminates the impact of the preliminary estimator's large error. In addition, it protects individual-level information through summary-statistics-based data aggregation across the local sites, leveraging a similar idea of bias-corrected approximation for SIM.} Through simulation studies, we demonstrate that our method outperforms existing approaches on finite samples. Finally, we apply our method to develop a high dimensional genetic risk model for type II diabetes using large-scale data sets from UK and Mass General Brigham biobanks, where only a small fraction of subjects in one site has been labeled via chart reviewing.

Summary

We haven't generated a summary for this paper yet.