Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Computing Gödel Numbers (2302.04213v1)

Published 8 Feb 2023 in math.LO, cs.LG, and cs.LO

Abstract: Given a computable sequence of natural numbers, it is a natural task to find a G\"odel number of a program that generates this sequence. It is easy to see that this problem is neither continuous nor computable. In algorithmic learning theory this problem is well studied from several perspectives and one question studied there is for which sequences this problem is at least learnable in the limit. Here we study the problem on all computable sequences and we classify the Weihrauch complexity of it. For this purpose we can, among other methods, utilize the amalgamation technique known from learning theory. As a benchmark for the classification we use closed and compact choice problems and their jumps on natural numbers, and we argue that these problems correspond to induction and boundedness principles, as they are known from the Kirby-Paris hierarchy in reverse mathematics. We provide a topological as well as a computability-theoretic classification, which reveal some significant differences.

Summary

We haven't generated a summary for this paper yet.