Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Artistic Style Transfer with Conditional Adversaria (2302.03875v1)

Published 8 Feb 2023 in cs.CV, cs.AI, cs.IR, and cs.LG

Abstract: A neural artistic style transformation (NST) model can modify the appearance of a simple image by adding the style of a famous image. Even though the transformed images do not look precisely like artworks by the same artist of the respective style images, the generated images are appealing. Generally, a trained NST model specialises in a style, and a single image represents that style. However, generating an image under a new style is a tedious process, which includes full model training. In this paper, we present two methods that step toward the style image independent neural style transfer model. In other words, the trained model could generate semantically accurate generated image under any content, style image input pair. Our novel contribution is a unidirectional-GAN model that ensures the Cyclic consistency by the model architecture.Furthermore, this leads to much smaller model size and an efficient training and validation phase.

Citations (1)

Summary

We haven't generated a summary for this paper yet.